Not Found

Find information on medical topics, symptoms, drugs, procedures, news and more, written for the health care professional.

Introduction to Clinical Decision Making

By Douglas L. McGee, DO, Director;Chief Academic Officer, Emergency Medicine Residency Program, Albert Einstein Medical Center;Albert Einsterin Healthcare Network

Click here for
Patient Education

Clinicians must integrate a huge variety of clinical data while facing conflicting pressures to decrease diagnostic uncertainty, risks to patients, and costs. Deciding what information to gather, which tests to order, how to interpret and integrate this information to draw diagnostic conclusions, and which treatments to give is known as clinical decision making.

When presented with a patient, clinicians usually must answer the following questions:

  • What disease does this patient have?

  • Should this patient be treated?

  • Should testing be done?

In straightforward or common situations, clinicians often make such decisions informally; diagnoses are made by recognizing disease patterns, and testing and treatment are initiated based on customary practice. For example, during a flu epidemic, a healthy adult who has had fever, aches, and harsh cough for 2 days is likely to be recognized as another case of influenza and provided only appropriate symptomatic relief. Such pattern recognition is efficient and easy to use but may be subject to error because other diagnostic and therapeutic possibilities are not seriously or systematically considered. For example, a patient with that flu pattern and decreased O2 saturation might instead have bacterial pneumonia and require antibiotics.

In more complex cases, a structured, quantitative, analytical methodology may be a better approach to decision making. Even when pattern recognition provides the most likely diagnostic possibility, analytic decision making is often used to confirm the diagnosis. Analytic methods may include application of the principles of evidence-based medicine, use of clinical guidelines, and use of various specific quantitative techniques (eg, Bayes theorem).