Merck Manual

Please confirm that you are a health care professional

honeypot link

Approach to the Trauma Patient

By

Jaime Jordan

, MD, UCLA School of Medicine

Reviewed/Revised Jul 2022
View PATIENT EDUCATION
Topic Resources

Injury is the number one cause of death for people aged 1 to 44. In the US, there were 278,345 trauma deaths in 2020, about 70% of which were accidental. Of intentional injury deaths, more than 65% were due to self-harm. In addition to deaths, injury results in about 37.9 million emergency department visits and 2.6 million hospital admissions annually.

Patients whose injuries are serious but not immediately fatal benefit the most from treatment in designated trauma centers, hospitals that have special staffing and protocols to provide immediate care to critically injured patients. Criteria for such designation (and for the necessity of transport to them) vary by state but usually follow the guidelines of the American College of Surgeons Committee on Trauma.

Many traumatic injuries are discussed elsewhere in THE MANUAL:

Etiology

Pathophysiology

All injuries, by definition, cause direct tissue damage, the nature and extent depending on the anatomic site, mechanism, and intensity of trauma. Severe direct tissue damage to critical organs (eg, to the heart, brain, spinal cord) is responsible for most immediate trauma deaths.

Additionally, patients surviving the initial insult may develop subsequent indirect injuries in the short and near term. Disruption of blood vessels causes hemorrhage, which may be external (and hence visible) or internal, either confined within an organ as a contusion or hematoma, or as free hemorrhage into a body compartment (eg, peritoneal cavity, thorax). Small amounts of hemorrhage (ie, < 10% of blood volume) are tolerated well by most patients. Larger amounts cause progressive declines in blood pressure and organ perfusion (shock Shock Shock is a state of organ hypoperfusion with resultant cellular dysfunction and death. Mechanisms may involve decreased circulating volume, decreased cardiac output, and vasodilation, sometimes... read more ), leading to cellular dysfunction, organ failure, and eventually death. Hemorrhagic shock and brain injury Traumatic Brain Injury (TBI) Traumatic brain injury (TBI) is physical injury to brain tissue that temporarily or permanently impairs brain function. Diagnosis is suspected clinically and confirmed by imaging (primarily... read more Traumatic Brain Injury (TBI) cause most short-term (ie, within hours) deaths, and multiple organ failure due to prolonged shock causes many of the near-term (ie, first 14 days) deaths. Additional near-term deaths result from infection because of disruption of normal anatomic barriers and immune system dysfunction.

Evaluation and Treatment

  • Primary survey: A, B, C, D, E evaluation and stabilization of Airway, Breathing, Circulation, Disability (neurologic status), and Exposure/Environmental control

  • Secondary survey: Head-to-toe examination after initial stabilization

  • Selective use of CT and other imaging studies

Care in the emergency department rather than emergency care delivered at the accident site is discussed here. Evaluation and treatment are done simultaneously, beginning with systems that pose the most immediate threat to life if damaged. Attending to dramatic but not deadly injuries (eg, open lower-extremity fracture, finger amputations) before evaluating immediate life threats can be a fatal mistake. A helpful mnemonic is A, B, C, D, E, for Airway, Breathing, Circulation, Disability (neurologic status), and Exposure/Environmental control. Systems are rapidly examined for serious abnormalities (primary survey); a more detailed examination (secondary survey) is done after the patient is stable.

Pearls & Pitfalls

  • Attending to dramatic but not deadly injuries (eg, open lower-extremity fracture, finger amputations) before evaluating immediate life threats can be a fatal mistake.

Airway

Airway patency is threatened by blood clots, teeth, or foreign bodies in the oropharynx; soft-tissue laxity and posterior retraction of the tongue caused by obtundation (eg, due to head injury, shock, intoxication); and edema or hematoma due to direct neck trauma. These obstructions are readily visible on direct inspection of the mouth or neck; having the patient speak can rapidly confirm that the airway is not likely in immediate danger.

Blood and foreign material are removed by suction or manually. Obtunded patients whose airway patency, airway protective mechanisms, oxygenation, or ventilation is in doubt and patients with significant oropharyngeal injury require endotracheal intubation Tracheal Intubation Most patients requiring an artificial airway can be managed with tracheal intubation, which can be Orotracheal (tube inserted through the mouth) Nasotracheal (tube inserted through the nose)... read more ; usually drugs are given to induce unconsciousness and paralysis before intubation is done. Multiple tools are available to assist with airway management including extraglottic devices, airway bougie, and video laryngoscopy. A carbon dioxide colorimetric device or, preferably, waveform capnography can help confirm proper endotracheal tube placement.

If patients require an artificial airway and endotracheal intubation is not possible (eg, due to edema of the airway caused by a thermal burn) or contraindicated (eg, due to severe maxillofacial injury), surgical or percutaneous cricothyrotomy Cricothyrotomy If the upper airway is obstructed because of a foreign body or massive facial trauma or if ventilation cannot be accomplished by other means, surgical entry into the trachea is required. Historically... read more is indicated. NOTE: When evaluating or manipulating a patient’s airway, cervical spine immobilization should be maintained (eg, by rigid collar, inline immobilization techniques) until cervical spine injury has been excluded by examination, imaging, or both.

Breathing

Adequate ventilation is threatened by decreased central respiratory drive (usually due to head injury, intoxication, or nearly fatal shock) or by chest injury Overview of Thoracic Trauma Thoracic trauma causes about 25% of traumatic deaths in the US. Many chest injuries cause death during the first minutes or hours after trauma; they can frequently be treated at the bedside... read more (eg, hemothorax or pneumothorax, multiple rib fractures, pulmonary contusion).

The chest wall is fully exposed to look for ample chest wall expansion, external signs of trauma, and paradoxical wall motion (ie, retraction of the chest wall on inspiration), which indicates a flail chest. The chest wall is palpated for rib fractures and the presence of subcutaneous air (sometimes the only finding in pneumothorax).

Pneumothorax is decompressed by chest tube (see How To Do Tube Thoracostomy How To Do Tube and Catheter Thoracostomy Surgical tube thoracostomy is insertion of a surgical tube into the pleural space to drain air or fluid from the chest. Pneumothorax that is recurrent, persistent, traumatic, large, under tension... read more How To Do Tube and Catheter Thoracostomy ). In patients with findings consistent with a pneumothorax, a chest x-ray or bedside ultrasonography should be done before initiating positive-pressure ventilation. Positive-pressure ventilation may enlarge a simple pneumothorax or convert it to a tension pneumothorax. Suspected tension pneumothorax can be decompressed with finger thoracostomy (insertion of a finger into the pleural space) or needle thoracostomy Treatment Pneumothorax is air in the pleural space causing partial or complete lung collapse. Pneumothorax can occur spontaneously or result from trauma or medical procedures. Diagnosis is based on clinical... read more Treatment (eg, a 14-gauge needle inserted in the midaxillary line, 5th intercostal space) to stabilize the patient if a chest tube cannot be inserted immediately. Inadequate ventilation is treated with endotracheal intubation and mechanical ventilation Overview of Mechanical Ventilation Mechanical ventilation can be Noninvasive, involving various types of face masks Invasive, involving endotracheal intubation Selection and use of appropriate techniques require an understanding... read more . An open pneumothorax is covered with an occlusive dressing attached on 3 sides; the 4th side is left untaped to release pressure that might build up and cause a tension pneumothorax.

Circulation

Significant external hemorrhage can occur from any major vessel but is always apparent. Life-threatening internal hemorrhage is often less obvious. However, this volume of hemorrhage can occur in only a few body compartments: the chest, abdomen, retroperitoneum, and soft tissues of the pelvis or thigh (eg, from a pelvic or femoral fracture).

Pulse and blood pressure are assessed, and signs of shock are noted (eg, tachypnea, dusky color, diaphoresis, altered mental status, poor capillary refill). Abdominal distention and tenderness, pelvis instability, and thigh deformity and instability are often present when internal hemorrhage in those areas is large enough to be life threatening.

External hemorrhage is controlled by direct pressure. Tourniquets should be applied for extremity bleeding if bleeding is not controlled by direct pressure. Two large-bore (eg, 14- or 16-gauge) IVs are started with 0.9% saline or lactated Ringer's solution; rapid infusion of 1 L (20 mL/kg for children) is given for signs of shock and hypovolemia Prognosis Shock is a state of organ hypoperfusion with resultant cellular dysfunction and death. Mechanisms may involve decreased circulating volume, decreased cardiac output, and vasodilation, sometimes... read more . Subsequently, early administration of blood component therapy should be considered. Bedside measurement of lactate or arterial blood gases (and calculation of base excess) can help indicate the severity of tissue hypoperfusion and shock and thus help guide fluid therapy. Protocols have been developed for patients requiring large volumes of blood products (massive transfusion protocols), including evaluation of coagulation with thromboelastography or rotational thromboelastography (where available) and early administration of tranexamic acid.

When there is strong clinical suspicion of serious intra-abdominal hemorrhage, patients may require immediate laparotomy. Placement of a resuscitative balloon for occlusion of the aorta can help stabilize the patient before surgery. Patients with massive intrathoracic hemorrhage may require immediate thoracotomy and possibly autotransfusion of blood recovered via tube thoracostomy.

Pearls & Pitfalls

  • Signs of hypovolemic shock in patients with apparently isolated head injury should prompt reevaluation for internal bleeding, because isolated head injury does not cause hypovolemic shock.

Disability (neurologic dysfunction)

Neurologic function is evaluated for serious deficits involving the brain and spinal cord. The Glasgow Coma Scale (GCS; see tables Glasgow Coma Scale Glasgow Coma Scale Glasgow Coma Scale and Modified Glasgow Coma Scale for Infants and Children Modified Glasgow Coma Scale for Infants and Children Modified Glasgow Coma Scale for Infants and Children ) and pupillary response to light are used to assess the level of consciousness and severity of intracranial injury.

Gross motor movement and sensation in each extremity are used to screen for serious spinal cord injury. The cervical spine is palpated for tenderness and deformity and stabilized in a rigid collar until cervical spine injury is excluded. With careful manual stabilization of the head and neck, the patient is logrolled onto a side to allow

  • Palpation of the thoracic and lumbar spine

  • Inspection of the back

  • Rectal examination if indicated to check tone (decreased tone indicates possible spinal cord injury), the prostate (a high-riding prostate suggests urethral or pelvic injury), and presence of blood

In the US, most patients arriving by ambulance are immobilized on a long, rigid board for ease of transport and to stabilize possible spinal fractures. Patients should be taken off the board as soon as possible because it is quite uncomfortable and pressure ulcers may occur within a few hours.

Table
Table

Patients with severe traumatic brain injury (GCS < 8) may require endotracheal intubation Tracheal Intubation Most patients requiring an artificial airway can be managed with tracheal intubation, which can be Orotracheal (tube inserted through the mouth) Nasotracheal (tube inserted through the nose)... read more for airway protection, brain imaging, neurosurgical evaluation, and therapy to prevent secondary brain injury (eg, optimization of blood pressure and oxygenation, seizure prophylaxis, treatment of elevated intracranial pressure, sometimes transient hyperventilation for patients with signs of impending brain herniation Brain Herniation Brain herniation occurs when increased intracranial pressure causes the abnormal protrusion of brain tissue through openings in rigid intracranial barriers (eg, tentorial notch). Because the... read more Brain Herniation ).

Exposure/environmental control

To ensure injuries are not missed, patients are completely undressed (by cutting off garments) and the entire body surface is examined for signs of occult trauma. The patient is kept warm (eg, with heated blankets and by using warmed IV fluids) to prevent hypothermia.

Secondary survey

After immediate life threats are assessed and the patient is stable, a more thorough evaluation is done, and a focused history is obtained. If only limited conversation is possible, an “AMPLE” history covers essential information:

  • Allergies

  • Medications

  • Past medical history

  • Last meal

  • Events of the injury

After the patient is completely undressed, the examination generally proceeds from head to toe; it typically includes all orifices and a more detailed look at areas examined in the initial survey. All soft tissues are inspected for lesions and swelling, all bones are palpated for tenderness, and range of motion is assessed in joints (unless there is obvious fracture or deformity).

A urinary catheter Bladder Catheterization Bladder catheterization is used to do the following: Obtain urine for examination Measure residual urine volume Relieve urinary retention or incontinence Deliver radiopaque contrast agents or... read more is usually placed in seriously injured and obtunded patients provided there is no evidence of urethral injury (eg, blood at the meatus, ecchymosis of the perineum). Intubated, seriously injured patients often also have an orogastric tube placed.

Open wounds are covered with sterile dressings, but cleansing and repair are deferred until completion of evaluation and treatment of more serious injuries. Serious clinically apparent dislocations with marked deformity or neurovascular compromise are imaged and reduced as soon as immediate life threats have been addressed.

Obvious or suspected fractures are splinted pending full assessment of serious injuries and appropriate imaging studies. A clinically apparent unstable pelvic fracture is stabilized with a commercial pelvic binder or bed sheet to help close the pelvic space and decrease bleeding; severe bleeding may require urgent angiographic embolization, surgical fixation, or direct surgical control.

In pregnant trauma patients, the initial priority is stabilization of the woman, which is the best way to ensure fetal stability. Near term, immobilization in the supine position may cause the uterofetoplacental unit to compress the inferior vena cava, obstructing blood return and causing hypotension. If so, the uterus can be manually pushed to the patient's left or the entire backboard can be tilted to the left to relieve the compression. Fetal monitoring is done if the fetus is >20 weeks gestation and continued for at least 4 to 6 hours. An obstetrician should be consulted early for patients with serious trauma or signs of pregnancy complications (eg, abnormal fetal heart rate, vaginal bleeding, contractions). Rh0(D) immune globulin is given to all Rh-negative women following even minor trauma. If the woman has cardiac arrest and cannot be resuscitated, a perimortem cesarean delivery can be done if the fetus is >20 weeks' gestation (corresponding to a uterine fundal height above the umbilicus).

Testing

Imaging and laboratory tests supplement clinical assessment. Patients with penetrating trauma typically have focal injuries that can limit imaging to the obviously involved region or regions. Blunt trauma, particularly when significant deceleration is involved (eg, serious fall, motor vehicle crash), can affect any part of the body, and imaging is used more liberally. Previously, x-rays or CT of the neck, chest, and pelvis were routinely done on most patients with blunt trauma. However, most trauma centers are now doing only imaging studies that are indicated by the mechanism of injury and findings on examination.

Cervical spine imaging can be deferred in patients who are not intoxicated, do not have focal neurologic findings, have no midline cervical spine tenderness or distracting injuries (eg, femur fracture), and are awake and alert. All others should have cervical spine imaging, preferably using CT.

Chest x-ray can identify airway disruption, lung injury, hemothorax, and pneumothorax; it can also suggest thoracic aorta tears (eg, by mediastinal widening). However, chest CT is more sensitive for most intrathoracic injuries and is often preferred. Chest imaging is now commonly done at the bedside using ultrasonography E-FAST How To Do E-FAST Examination E-FAST (Extended Focused Assessment with Sonography in Trauma) is a bedside ultrasonographic protocol designed to detect peritoneal fluid, pericardial fluid, pneumothorax, and/or hemothorax... read more How To Do E-FAST Examination (extended focused assessment with sonography in trauma), particularly if patients are unstable. Pneumothoraces, hemothoraces, and hemopericardium can be identified.

CT of the chest, abdomen, pelvis, spine, or head or, particularly, combinations of these studies are frequently used for patients who require imaging after severe multiple blunt trauma.

Identification of intra-abdominal injury is essential. Historically, diagnostic peritoneal lavage How To Do Diagnostic Peritoneal Lavage (DPL) Diagnostic peritoneal lavage (DPL) is an invasive emergency procedure used to detect hemoperitoneum and help determine the need for laparotomy following abdominal trauma. A catheter is inserted... read more (DPL) was used to assess for intraperitoneal blood. In DPL, a peritoneal dialysis catheter is inserted through the abdominal wall into the peritoneal cavity. If >10 mL of blood is aspirated, immediate laparotomy is indicated. If blood is not aspirated, 1 L of 0.9% saline is infused through the catheter and drained out; analysis of the returned fluid is used to guide management. However, in all but low-resource areas, DPL has largely been replaced by bedside ultrasonography (E-FAST examination), particularly for unstable patients; it is sensitive for significant volumes of intraperitoneal blood and thus the need for immediate laparotomy. If patients are stable, CT is the preferred study; it is very accurate, allows imaging of the retroperitoneal structures and bones, and shows the volume and sometimes the origin of hemorrhage.

Extended Focused Assessment With Sonography in Trauma (E-FAST)
VIDEO

Head CT is typically done in patients with altered mental status or focal neurologic abnormalities and in patients who sustained loss of consciousness. Some evidence suggests that CT is not necessary in patients with brief loss of consciousness (ie, < 5 seconds) or transient amnesia or disorientation but who are alert with a GCS of 15 during examination. Imaging is done more liberally in patients with persistent headache, vomiting, amnesia, seizures, age > 60 years, and drug or alcohol intoxication and in patients taking anticoagulant or antiplatelet drugs. Clinical decision rules have been developed to help determine which patients should have a head CT (1 Evaluation and treatment reference Injury is the number one cause of death for people aged 1 to 44. In the US, there were 278,345 trauma deaths in 2020, about 70% of which were accidental. Of intentional injury deaths, more than... read more ). These decision rules should be used to aid, but not replace, clinical judgment.

For children with head injury, the Pediatric Emergency Care Applied Research Network (PECARN) has developed an algorithm that may help limit radiation exposure from head CT; clinical observation is used in children who may otherwise have received CT.

Evaluation of Children 0 to 2 Years With a Head Injury

Evaluation of Children 0 to 2 Years With a Head Injury

* Include agitation, somnolence, repetitive questioning, and slow response to verbal communication.

† Include motor vehicle crash involving ejection of patient, death of another passenger, or rollover; collision of a motor vehicle with a pedestrian or bicyclist not wearing a helmet; and a fall of > 0.9 m for children < 2 years; and a blow to the head by a high-impact object.

‡ No other findings suggesting traumatic brain injury, such as only LOC, headache, vomiting, and certain scalp hematomas in children >3 months.

ED = emergency department; GCS = Glasgow Coma Scale; LOC = loss of consciousness.

Adapted from Kupperman N, Holmes JF, Dayan PS, et al for the Pediatric Emergency Care Applied Research Network: Identification of children at very low risk of clinically-important brain injuries after head trauma: A prospective cohort study. Lancet 374: 1160-1170, 2009. doi:10.1016/S0140-6736(09)61558-0

Evaluation of Children 2 Years With a Head Injury

Evaluation of Children ≥ 2 Years With a Head Injury

* Include agitation, somnolence, repetitive questioning, and slow response to verbal communication.

† Include motor vehicle crash involving ejection of patient, death of another passenger, or rollover; collision of a motor vehicle with a pedestrian or bicyclist not wearing a helmet; and a fall of >1.5 m for children 2 years; and a blow to the head by a high-impact object.

‡ No other findings suggesting traumatic brain injury, such as only LOC, headache, vomiting, and certain scalp hematomas in children >3 months.

ED = emergency department; GCS = Glasgow Coma Scale; LOC = loss of consciousness.

Adapted from Kupperman N, Holmes JF, Dayan PS, et al for the Pediatric Emergency Care Applied Research Network: Identification of children at very low risk of clinically-important brain injuries after head trauma: A prospective cohort study. Lancet 374: 1160-1170, 2009. doi:10.1016/S0140-6736(09)61558-0

Aortic injury should be considered in patients with severe deceleration chest injury or suggestive signs (eg, pulse deficits or asymmetric blood pressure measurements, end-organ ischemia, suggestive findings on chest x-ray); these patients may require CT angiography or other aortic imaging (see Aortic Disruption [Traumatic] Aortic Disruption (Traumatic) The aorta can rupture completely or incompletely after blunt or penetrating chest trauma. Signs may include asymmetric pulses or blood pressure, decreased blood flow to the lower extremities... read more ). Short-acting beta blockers can be used to control heart rate and blood pressure in patients with traumatic aortic injury.

Vascular injury to the carotid and vertebral vessels should be considered in patients with trauma to the head and neck, particularly those with unilateral neurologic findings, a neck seat belt sign (linear ecchymosis due to the shoulder strap), or a predisposing injury (eg, fracture of C1, C2, or C3; other C-spine fracture with subluxation; hanging mechanism). Such patients typically should have CT angiography.

Plain x-rays are obtained of any suspected fractures and dislocations of the extremities. Other imaging tests are obtained for specific indications (eg, angiography to diagnose and sometimes embolize vascular injury; CT to better delineate spinal, pelvic, or complex joint fractures).

Laboratory tests that may be useful include

  • Complete blood count to establish a baseline

  • Serial hemoglobin levels to assess for bleeding

  • Blood gas determination for partial pressure of oxygen, partial pressure of carbon dioxide, and base deficit

  • Urine examination for blood

  • Glucose to evaluate for hypoglycemia

  • Type and crossmatch for possible blood transfusion

  • Coagulation studies

Measures of perfusion (serum lactate, base deficit on arterial blood gas measurement, and, in patients with a catheterized central vein, central venous oxygen saturation) are indicated to help identify early or partially treated shock Shock Shock is a state of organ hypoperfusion with resultant cellular dysfunction and death. Mechanisms may involve decreased circulating volume, decreased cardiac output, and vasodilation, sometimes... read more . Other reflexively obtained tests (eg, electrolytes and other chemistries) are unlikely to be helpful unless suggested by relevant medical history (eg, renal insufficiency, diuretic use).

Toxicology screening (eg, blood alcohol, urine drug screen) is often done; results of this testing rarely change immediate management but can help identify substance use disorder Substance Use Disorders Substance use disorders involve a pathologic pattern of behaviors in which patients continue to use a substance despite experiencing significant problems related to its use. Diagnosis of substance... read more causative of injury, allowing intervention to prevent subsequent trauma.

D-Dimer, fibrinogen, and fibrin degradation products may be measured in pregnant trauma patients. Test results may be abnormal in patients with placental abruption Placental Abruption (Abruptio Placentae) Placental abruption (abruptio placentae) is premature separation of the placenta from the uterus, usually after 20 weeks gestation. It can be an obstetric emergency. Manifestations may include... read more ; however, these tests are neither sensitive nor specific and cannot definitively confirm or exclude the diagnosis.

Evaluation and treatment reference

  • 1. Bouida W, Marghli S, Souissi S, et al: Prediction value of the Canadian CT head rule and the New Orleans criteria for positive head CT scan and acute neurosurgical procedures in minor head trauma: A multicenter external validation study. Ann Emerg Med 61(5): 521-527, 2013. doi: 10.1016/j.annemergmed.2012.07.016

More Information

The following English-language resources may be useful. Please note that THE MANUAL is not responsible for the content of these resources.

Drugs Mentioned In This Article

Drug Name Select Trade
Cyklokapron, Lysteda
View PATIENT EDUCATION
NOTE: This is the Professional Version. CONSUMERS: View Consumer Version
quiz link

Test your knowledge

Take a Quiz! 
iOS ANDROID
iOS ANDROID
iOS ANDROID
TOP