Merck Manual

Please confirm that you are a health care professional

honeypot link

Human Immunodeficiency Virus (HIV) Infection in Infants and Children

By

Geoffrey A. Weinberg

, MD, Golisano Children’s Hospital

Reviewed/Revised Mar 2023
View PATIENT EDUCATION
Topic Resources

Human immunodeficiency virus (HIV) infection is caused by the retrovirus HIV-1 (and less commonly by the related retrovirus HIV-2). Infection leads to progressive immunologic deterioration and opportunistic infections and cancers. The end stage is acquired immunodeficiency syndrome (AIDS). Diagnosis is by viral antibodies in children > 18 months and virologic nucleic acid amplification tests (such as polymerase chain reaction testing) in children < 18 months. Treatment is with combinations of antiretroviral medications.

The general natural history and pathophysiology of pediatric HIV infection is similar to that in adults; however, the method of infection, clinical presentations, and treatments often differ.

General references

  • ClinicalInfo.HIV.gov/Panel on Antiretroviral Therapy and Medical Management of Children Living with HIV: Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

  • Weinberg GA, Siberry GK: Pediatric human immunodeficiency virus infection. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed., edited by JE Bennett, R Dolin, and MJ Blaser. Philadelphia, Elsevier, 2020, pp. 1732–1738.

Epidemiology of HIV Infection in Infants and Children

In the United States, since HIV infection was first recognized, more than 10,000 cases have been reported in children and young adolescents, but this number represents only 1% of total cases. In 2019, < 60 new cases were diagnosed in children < 13 years of age (1 Epidemiology references Human immunodeficiency virus (HIV) infection is caused by the retrovirus HIV-1 (and less commonly by the related retrovirus HIV-2). Infection leads to progressive immunologic deterioration and... read more Epidemiology references ).

More than 95% of US children with HIV infection acquired the infection from their mother, through either antenatal or perinatal transmission (also called vertical transmission or mother-to-child transmission [MTCT]). Most of the remainder (including children with hemophilia or other coagulation disorders) received contaminated blood or blood products. Some cases were the result of sexual abuse.

MTCT has declined significantly in the United States from approximately 25% in 1991 (resulting in > 1600 infected children annually) to ≤ 1% in 2019 (resulting in approximately 50 children infected annually). MTCT has been reduced by using comprehensive serologic screening and treating of infected pregnant women during both pregnancy and delivery and by providing short-term antiretroviral prophylaxis to exposed newborns. Approximately 3000 to 5000 pregnant women with HIV infection give birth annually in the United States, so attention to preventing MTCT remains critical in preventing HIV infection in infants and children.

Although the number of children infected annually has decreased, the total number of US adolescents and young adults (13 to 24 years of age) with HIV infection continues to increase despite the marked success in decreasing perinatal HIV infection. In 2019, about 36,000 new cases of HIV infection in the United States were diagnosed; 20% of these were among adolescents and young adults 13 to 24 years of age (the majority of whom were 18 years of age or older) (1 Epidemiology references Human immunodeficiency virus (HIV) infection is caused by the retrovirus HIV-1 (and less commonly by the related retrovirus HIV-2). Infection leads to progressive immunologic deterioration and... read more Epidemiology references ). This paradoxical increase in the number of children and adolescents with HIV infection is a result of both greater survival rates among perinatally infected children and new cases of HIV infection acquired via sexual transmission among other adolescents and young adults (in particular, among young men who have sex with men). Reducing transmission of HIV among young men who have sex with men continues to be an important focus of domestic HIV control efforts as is continuing the reduction of MTCT.

Worldwide, in 2021, about 1.7 million children < 14 years old had HIV infection (4% of the total caseload worldwide) (2 Epidemiology references Human immunodeficiency virus (HIV) infection is caused by the retrovirus HIV-1 (and less commonly by the related retrovirus HIV-2). Infection leads to progressive immunologic deterioration and... read more Epidemiology references ). Each year, about 160,000 more children are infected (10% of all new infections), and about 100,000 children die.

Although these numbers represent a daunting amount of illness, new programs created to deliver antiretroviral therapy (ART) to pregnant women and children have reduced the annual number of new childhood infections and childhood deaths by 33 to 50% in the past few years (1 Epidemiology references Human immunodeficiency virus (HIV) infection is caused by the retrovirus HIV-1 (and less commonly by the related retrovirus HIV-2). Infection leads to progressive immunologic deterioration and... read more Epidemiology references ). However, infected children still do not receive ART nearly as often as adults, and interrupting vertical transmission Prevention of perinatal transmission Human immunodeficiency virus (HIV) infection is caused by the retrovirus HIV-1 (and less commonly by the related retrovirus HIV-2). Infection leads to progressive immunologic deterioration and... read more Prevention of perinatal transmission (MTCT) and providing treatment to children with HIV infection remain the two most important goals of global pediatric HIV medicine.

Epidemiology references

Transmission of HIV Infection in Infants and Children

The infection risk for an infant born to a mother with HIV infection who did not receive ART during pregnancy is estimated at 25%.

Risk factors for MTCT include

  • Seroconversion during pregnancy or breastfeeding (major risk)

  • High plasma viral RNA concentrations (major risk)

  • Advanced maternal disease

  • Low maternal peripheral CD4+ T-cell counts

Prolonged rupture of membranes is no longer thought to be an important risk factor.

Cesarean delivery before onset of active labor reduces the risk of MTCT. However, it is clear that MTCT is reduced most significantly by giving combination ART, usually including zidovudine (ZDV), to the mother and neonate (see Prevention of HIV Infection in Infants and Children Prevention Human immunodeficiency virus (HIV) infection is caused by the retrovirus HIV-1 (and less commonly by the related retrovirus HIV-2). Infection leads to progressive immunologic deterioration and... read more Prevention ). ZDV monotherapy reduces MTCT from 25% to about 8%, and current combination ART reduces it to ≤ 1%.

HIV has been detected in both the cellular and cell-free fractions of human breast milk. Estimates of the overall risk of transmission through breastfeeding are 12 to 14%, reflecting varying durations of breastfeeding. Transmission by breastfeeding is greatest in mothers with high plasma viral RNA concentrations (eg, women who become infected during pregnancy or during the period of breastfeeding).

Early in the HIV pandemic, HIV was transmitted to young children via contaminated blood products (eg, whole blood or cellular or plasma blood components such as packed red blood cells, intravenous immune globulin); however, transmission via this route no longer occurs when blood products are screened for HIV (and, in the case of immune globulin, also prepared with viral inactivation steps).

Classification of HIV Infection in Infants and Children

HIV infection causes a broad spectrum of disease, of which AIDS is the most severe. Past classification schemes established by the Centers for Disease Control and Prevention (CDC) defined the progression of clinical and immunologic decline. These clinical and immunologic categories have become much less relevant in the era of combination ART, because when ART is taken as prescribed, it almost invariably decreases symptoms and increases CD4+ T-cell counts. However, immunologic staging based on CD4+ T-cell counts remains valuable for planning opportunistic pathogen prophylaxis.

The clinical categories in children < 13 years are available from ClinicalInfo.HIV.gov's Appendix C: CDC Pediatric HIV CD4 Cell Count/Percentage and HIV-Related Diseases Categorization table and are shown in table . In infants and children, HIV infection and disease may progress more rapidly than in adolescents and adults.

Table

Symptoms and Signs of HIV Infection in Infants and Children

Children receiving combination antiretroviral therapy (ART)

Combination ART has significantly changed the clinical manifestations of pediatric HIV infection. Although bacterial pneumonia and other bacterial infections (eg, bacteremia, recurrent otitis media) still occur more often in children with HIV infection, opportunistic infections and growth failure are much less frequent than in the pre-ART era. New problems, such as alterations in serum lipids, hyperglycemia, fat maldistribution (lipodystrophy and lipoatrophy), nephropathy, and osteonecrosis, are reported; however, the incidence is lower in children than in adults with HIV infection.

Although combination ART clearly improves neurodevelopmental outcome, there seems to be an increased rate of behavioral, developmental, and cognitive problems in treated children with HIV infection. It is unclear whether these problems are caused by HIV infection itself, medications, or other biopsychosocial factors that occur among children with HIV infection. It is unknown whether any additional effects of HIV infection or ART during critical periods of growth and development will manifest later in life. However, no such effects have been noted in perinatally infected children who were treated with ART and are now young adults. To detect such adverse effects, providers will need to monitor children with HIV infection over time.

Natural history in untreated children

Infants infected perinatally usually are asymptomatic during the first few months of life, even if no combination ART is begun. Although the median age at symptom onset is about 3 years, some children remain asymptomatic for > 5 years and, with appropriate ART, are expected to survive to adulthood.

In the pre-ART era, about 10 to 15% of children had rapid disease progression, with symptoms occurring in the first year of life and death occurring by 18 to 36 months; these children were thought to have acquired HIV infection earlier in utero. However, most children likely acquire infection at or near birth and have slower disease progression (surviving beyond 5 years even before ART was used routinely).

In infants who are not receiving ART, disease manifestations include failure to thrive, neurologic problems (eg, loss or delay in motor skills, irritability, poor head growth), failure to thrive, and Pneumocystis pneumonia.

Older children who are not receiving ART frequently have recurrent otitis media, sinusitis, bacterial pneumonia, bacteremia, herpes zoster, and lymphoid interstitial pneumonitis. Older children and adolescents whose disease manifests late in childhood (called slow progressors or nonprogressors) may present with persistent generalized lymphadenopathy, esophageal candidiasis, and lymphoma of the brain or other sites, which is similar to manifestations in adults who are not receiving ART.

All of these manifestations, including opportunistic infections, occur only rarely in people who are receiving combination ART.

Complications of HIV in children

When complications occur, they typically involve opportunistic infections (and rarely cancer). Combination ART has made such infections uncommon, and they now occur mainly in undiagnosed children who have not yet received ART or in children who are not adherent to ART.

When opportunistic infections occur, Pneumocystis jirovecii pneumonia Pneumocystis jirovecii Pneumonia Pneumocystis jirovecii, an atypical fungus, is a common cause of pneumonia in immunosuppressed patients, especially in those infected with human immunodeficiency virus (HIV) and in those... read more <i >Pneumocystis jirovecii</i> Pneumonia is the most common and serious and has high mortality. Pneumocystis pneumonia can occur as early as age 4 to 6 weeks but occurs mostly in infants aged 3 to 6 months who acquired infection before or at birth. Infants and older children with Pneumocystis pneumonia characteristically develop a subacute, diffuse pneumonitis with dyspnea at rest, tachypnea, oxygen desaturation, nonproductive cough, and fever (in contrast to non–HIV-infected immunocompromised children and adults, in whom onset is often more acute and fulminant).

Other opportunistic infections in immunosuppressed children include Candida esophagitis Candida Esophagitis Esophageal infection occurs mainly in patients with impaired host defenses. Primary agents include Candida albicans, herpes simplex virus, and cytomegalovirus. Symptoms are odynophagia... read more <i >Candida</i> Esophagitis , disseminated cytomegalovirus infection Cytomegalovirus (CMV) Infection Cytomegalovirus (CMV, human herpesvirus type 5) can cause infections that have a wide range of severity. A syndrome of infectious mononucleosis that lacks severe pharyngitis is common. Severe... read more , chronic or disseminated herpes simplex virus infection Neonatal Herpes Simplex Virus (HSV) Infection Neonatal herpes simplex virus infection is usually transmitted during delivery. A typical sign is vesicular eruption, which may be accompanied by or progress to disseminated disease. Diagnosis... read more Neonatal Herpes Simplex Virus (HSV) Infection and varicella-zoster virus infection Chickenpox Chickenpox is an acute, systemic, usually childhood infection caused by the varicella-zoster virus (human herpesvirus type 3). It usually begins with mild constitutional symptoms (eg, fever... read more Chickenpox , and, less commonly, Mycobacterium tuberculosis Perinatal Tuberculosis (TB) Tuberculosis can be acquired during the perinatal period. Symptoms and signs are nonspecific. Diagnosis is by culture and sometimes x-ray and biopsy. Treatment is with isoniazid and other antituberculous... read more and M. avium complex infections, chronic enteritis caused by Cryptosporidium Cryptosporidiosis Cryptosporidiosis is infection with the protozoan Cryptosporidium. The primary symptom is watery diarrhea, often with other signs of gastrointestinal distress. Illness is typically self-limited... read more Cryptosporidiosis or other organisms, and disseminated or CNS cryptococcal or Toxoplasma gondii infection Toxoplasmosis Toxoplasmosis is infection with Toxoplasma gondii. Symptoms range from none to benign lymphadenopathy, a mononucleosis-like illness, to life-threatening central nervous system (CNS) disease... read more Toxoplasmosis .

Cancers in immunocompromised children with HIV infection are relatively uncommon, but leiomyosarcomas and certain lymphomas, including CNS lymphomas and non-Hodgkin B-cell lymphomas (Burkitt type), occur much more often than in immunocompetent children. Kaposi sarcoma is very rare in children with HIV infection. (See Cancers Common Among Patients with HIV Infection Cancers Common in Patients with HIV Infection AIDS-defining cancers in patients infected with HIV are Kaposi sarcoma Lymphoma, Burkitt (or equivalent term) Lymphoma, immunoblastic (or equivalent term) Lymphoma, primary, of central nervous system read more .)

Diagnosis of HIV Infection in Infants and Children

  • Serum antibody tests

  • Virologic nucleic acid tests (includes HIV RNA/DNA or HIV RNA assays)

HIV-specific tests

Children < 18 months retain maternal antibody, causing false-positive results even with the 4th-generation HIV-1/2 antigen/antibody combination immunoassay. Therefore, in these children, the diagnosis must be made by HIV virologic assays, or nucleic acid tests (NATs) as they are known collectively, such as qualitative RNA or RNA/DNA assays. Newer real-time RNA or RNA/DNA assays can be used to diagnose about 30 to 50% of cases at birth and nearly 100% of cases by 4 to 6 months of age, including children with non-subtype B and group O strains of HIV more commonly found outside of the United States. HIV viral culture has acceptable sensitivity and specificity but has been replaced by NATs because it is technically more demanding and hazardous. (See also ClinicalInfo.HIV.gov's Diagnosis of HIV Infection in Infants and Children.)

In children > 18 months, the diagnosis of HIV infection is made using a series of tests: a serum 4th-generation HIV-1/2 antigen/antibody combination immunoassay, followed by a 2nd-generation HIV-1/2 antibody differentiation assay, and, if required, an HIV-1 qualitative RNA assay. This diagnostic testing algorithm has supplanted the previous sequential testing by serum immunoassay and Western blot confirmation. Only very rarely does an older child with HIV infection lack HIV antibody because of significant hypogammaglobulinemia.

The quantitative HIV RNA assay is most commonly used to determine HIV plasma viral load for monitoring efficacy of treatment. It may also be used for infant diagnostic testing; however, care must be taken because test specificity is uncertain at very low RNA concentrations (< 5000 copies/mL) and sensitivity is unknown in infants of mothers with complete treatment-mediated viral suppression at the time of delivery.

Rapid point-of-care tests may be done using rapid immunoassay tests for HIV antibody because these tests may provide results in minutes to hours using oral secretions, whole blood, or serum. In the United States, these tests are most useful in labor and delivery units to test women of unknown HIV serostatus, thus allowing perinatal counseling, commencement of ART to prevent MTCT, and testing of the infant by virologic NATs to be arranged during the birth visit. These tests provide similar advantages in other episodic care settings (eg, emergency departments, adolescent medicine clinics, sexually transmitted infection clinics) and in medically underserved areas of the world.

However, rapid assays typically require confirmatory tests, such as a second antigen/antibody assay, an HIV-1/2 antibody differentiation assay, or a NAT. These confirmatory tests are especially important because in areas where the expected HIV prevalence is low, even a specific rapid assay yields mostly false-positive results (low positive predictive value by Bayes theorem Bayes Theorem Test results may help make a diagnosis in symptomatic patients (diagnostic testing) or identify occult disease in asymptomatic patients (screening). If the tests were appropriately ordered on... read more ). The higher the pre-test probability of HIV (ie, seroprevalence), the higher the positive predictive value of the test.

As more laboratories are able to do same-day testing using 4th-generation HIV-1/2 antigen/antibody combination immunoassays, there will be less need for the comparatively less sensitive and less specific rapid immunoassays. Again, neither rapid immunoassays nor 4th generation HIV1/2 antigen/antibody assays are sensitive enough for HIV diagnosis in a child < 18 months of age.

Pre-test counseling before HIV testing of a child involves discussing the possible psychosocial risks and benefits of testing with the mother or primary caregiver (and the child, if old enough). Most US jurisdictions (and CDC recommendations) now follow an opt-out, oral discussion rather than requiring formal oral (or written) consent. Providers should act in accordance with their state, local, and hospital laws and regulations. Counseling and consent requirements should not deter testing if it is medically indicated; refusal of a patient or guardian to give consent does not relieve providers of their professional and legal responsibilities, and sometimes authorization for testing must be obtained by other means (eg, court order).

Test results should be discussed in person with the family, the primary caregiver, and, if old enough, the child. If the child is HIV-positive, appropriate counseling and subsequent follow-up care must be provided. In all cases, maintaining confidentiality is essential.

Children and adolescents with HIV infection or AIDS must be reported to the appropriate public health department in accordance with state, local, and hospital laws.

(For questions regarding neonatal diagnosis, clinicians can call the Perinatal HIV Consultation and Referral Services Hotline: 1-888-HIV-8765 [1-888-448-8765].)

HIV testing schedules for pregnant women and newborns

HIV infection testing for all pregnant women should be done before pregnancy or early in pregnancy so that combination antiretroviral (ARV) medications may be given for their own health and to prevent MTCT. Current recommendations suggest repeat testing in the third trimester to detect newly acquired HIV infection—the treatment of which even late in pregnancy will still improve the woman's health and help lessen MTCT (1 Diagnosis reference Human immunodeficiency virus (HIV) infection is caused by the retrovirus HIV-1 (and less commonly by the related retrovirus HIV-2). Infection leads to progressive immunologic deterioration and... read more Diagnosis reference ).

HIV infection testing for newborns is done on varying schedules, depending on whether an infant perinatally exposed to HIV by a mother living with HIV infection is considered at low or higher risk of transmission; higher-risk infants are tested more frequently.

Low risk of perinatal HIV transmission is defined by the following:

  • The mother received antiretroviral therapy (ART) during pregnancy.

  • The mother had sustained virologic suppression as shown by plasma HIV viral RNA of < 50 copies/mL near delivery.

  • There were no concerns about the mother's adherence to ART.

Testing of infants at low risk is recommended at the following ages:

Higher risk of perinatal HIV transmission is defined as a mother living with HIV infection who has one or more of the following factors:

  • Did not receive prenatal care

  • Did not receive ART during pregnancy, or received only intrapartum ART

  • Initiated ART late in pregnancy (during the late second or third trimester)

  • Diagnosed with acute HIV infection during pregnancy

  • Had an unknown or a detectable (≥ 50 copies/mL) HIV plasma viral load near delivery (particularly when delivery was vaginal)

  • Had acute or primary HIV infection during pregnancy or is breastfeeding (in which case breastfeeding should be stopped)

Testing of infants at higher risk is recommended at the following ages:

A positive test should be confirmed immediately using the same or another virologic test; two positive tests confirm HIV infection.

If the serial HIV virologic tests are negative at ≥ 2 weeks and at ≥ 4 weeks and in the absence of any AIDS-defining illness, the infant is considered presumptively uninfected (ie, with > 95% accuracy). If HIV virologic tests are also negative at ≥ 4 weeks and at ≥ 4 months, and again in the absence of any AIDS-defining illness, the infant is considered definitively uninfected.

Some experts continue to recommend follow-up antibody tests (1 antigen/antibody combination assay at > 18 months or, alternatively, 2 such assays done between 6 months and 18 months) to definitively exclude HIV infection and confirm seroreversion (loss of passively acquired HIV antibodies), especially if the infant was not in the low-risk category or was suspected to have exposure after birth (eg, from breast milk, percutaneous exposure, or sexual abuse). Seroreversion occurs at a median of 14 months of age; late seroreversion occasionally occurs up to 18 to 24 months of age, complicating the interpretation of antibodies in perinatally exposed infants. Expert consultation should be sought, and repeated testing (along with virologic NATs) is indicated for the perinatally exposed toddler with positive antibodies.

If an infant < 18 months with a positive antibody test but negative virologic tests develops an AIDS-defining illness (see ClinicalInfo.HIV.gov's Appendix C: CDC Pediatric HIV CD4 Cell Count/Percentage and HIV-Related Diseases Categorization table), HIV infection is diagnosed.

Additional tests after HIV diagnosis

Once infection is diagnosed, other tests are done:

  • CD4+ T-cell count

  • CD8+ T-cell count

  • Plasma viral RNA concentration

Infected children require measurement of CD4+ and CD8+ T-cell counts and plasma viral RNA concentration (viral load) to help determine their degree of illness, prognosis, and the effects of therapy. CD4+ counts may be normal (eg, above the age-specific cutoffs of category 1 in table ) initially but fall eventually. CD8+ counts usually increase initially and do not fall until late in the infection. These changes in cell populations result in a decrease in the CD4+:CD8+ cell ratio, a characteristic of HIV infection (although sometimes occurring in other infections). Plasma viral RNA concentrations in untreated children < 12 months are typically very high (mean of about 200,000 RNA copies/mL). By 24 months, viral concentrations in untreated children decrease (to a mean of about 40,000 RNA copies/mL).

Although the wide range of HIV RNA concentrations in children make the data less predictive of morbidity and mortality than in adults, determining plasma viral concentrations in conjunction with CD4+ counts still yields more accurate prognostic information than does determining either marker alone. Less expensive alternative surrogate markers such as total lymphocyte counts and serum albumin levels may also predict AIDS mortality in children, which may be useful in areas where more sophisticated testing is not available.

Although not routinely measured, serum immunoglobulin concentrations, particularly IgG and IgA, often are markedly elevated, but occasionally some children develop panhypogammaglobulinemia. Patients may be anergic to skin test antigens.

Diagnosis reference

  • 1. Pollock L, Cohan D, Pecci CC, Mittal P: ACOG Committee opinion no. 752: Prenatal and perinatal human immunodeficiency virus testing. Obstet Gynecol 133(1):187, 2019. doi: 10.1097/AOG.0000000000003048

Treatment of HIV Infection in Infants and Children

  • Combinations of antiretroviral (ARV) medications (antiretroviral therapy [ART])

  • Supportive care

Combination ART is individualized to the child but most commonly includes 3 medications:

  • Two nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) plus

  • One integrase strand transfer inhibitor (INSTI) or one protease inhibitor

Sometimes a non-nucleoside reverse transcriptase inhibitor (NNRTI) is given with 2 NRTIs.

Because of the success of combination ART, much of the current focus is on the management of HIV infection as a chronic disease, addressing both medical and social issues. Important long-term medical issues include the need to manage HIV-related and drug-related metabolic complications and to account for age-related changes in drug pharmacokinetics and pharmacodynamics. Social issues include the need to cope with peer pressure, ensure school success and appropriate career choice, and educate children about transmission risk. Adolescents often have difficulty seeking and following health care advice and need particular help with treatment adherence.

Challenges for infants and younger children include lack of pediatric pharmacokinetic data for newer compounds, palatability and tolerability of liquid formulations, and lack of fixed-dosed combination tablets.

Children and adolescents should be managed in collaboration with experts who have experience in the management of pediatric HIV infection.

Indications for ART in children

Initiation of ART for children is similar to that in adults; essentially, all children with HIV infection should be given ART as soon as possible (rapid initiation, within 1 to 2 weeks of diagnosis). There is both strong consensus and clinical trial evidence for early initiation of ART in infants with HIV infection.

The goal of therapy at all ages is similar to that in adults:

  • Suppress HIV replication (as measured by HIV plasma viral load).

  • Maintain or achieve age-normal CD4+ counts and percentages with the least amount of drug toxicity.

Before making the decision to initiate therapy, the practitioner should fully assess the readiness of the caregiver and child to adhere with ARV medication administration and discuss the potential benefits and risks of therapy. Because expert opinions on therapeutic strategies change rapidly, consultation with experts is strongly advised.

Adherence to ART

ART is successful only if the family and child are able to adhere to a possibly complex medical regimen. Nonadherence not only leads to failure to control HIV but also selects drug-resistant HIV strains, which reduces future therapeutic choices.

Barriers to adherence should be addressed before starting treatment. Barriers include availability and palatability of pills or suspensions, adverse effects (including those due to drug interactions with current therapy), pharmacokinetic factors such as the need to take some medications with food or in a fasted state, and a child’s dependence on others to give medications (and parents with HIV infection may have problems with remembering to take their own medications). Newer once- or twice-daily combination regimens and more palatable pediatric formulations help improve adherence, and the growing availability of once-daily fixed-dose combination tablets for older children and adults has helped many youth living with HIV infection.

Adherence may be especially problematic in adolescents regardless of whether they have been infected perinatally or have acquired HIV infection later on through sexual activity or injection drug use. Adolescents have complex biopsychosocial issues, such as low self-esteem, chaotic and unstructured lifestyles, fear of being singled out because of illness, and sometimes a lack of family support, all of which may reduce ART adherence. In addition, adolescents may not be developmentally able to understand why ARV medications are necessary during periods of asymptomatic infection and they may worry greatly about adverse effects.

Despite frequent contact with the medical system, perinatally infected adolescents may fear or deny their HIV infection, distrust information provided by the health care team, and poorly make the transition to the adult health care system (see Transition to Adult Care Transition to Adult Care Human immunodeficiency virus (HIV) infection is caused by the retrovirus HIV-1 (and less commonly by the related retrovirus HIV-2). Infection leads to progressive immunologic deterioration and... read more Transition to Adult Care ). Treatment regimens for adolescents must be made in consideration of these issues. Although the goal is to have the adolescent adhere to a maximally potent regimen of ARV medications, a realistic assessment of the adolescent's maturity and support systems may suggest that the treatment plan begin by focusing on avoidance of opportunistic illness and providing information about reproductive health services, housing, and how to succeed in school. Once care team members are confident the adolescent is receiving proper support, they can decide exactly which ARV medications are best.

Monitoring

Clinical and laboratory monitoring are important for identifying drug toxicity and therapeutic failure.

  • At entry into care and at initiation of ART (and if changing ART regimen): Physical examination, adherence evaluation, complete blood count, serum chemistry values including electrolytes, liver and kidney tests, HIV plasma viral load, CD4+ lymphocyte counts, and, for adolescent girls, a pregnancy test

  • Every 3 to 4 months: Physical examination, adherence evaluation, complete blood count, serum chemistry values, including electrolytes, liver and kidney tests, HIV plasma viral load, and CD4+ lymphocyte counts

  • Every 6 to 12 months: Lipid profiles and urinalysis; complete blood count and serum chemistry values including electrolytes, and liver and kidney tests if not done already in those with a stable clinical status; adherence evaluation

HIV genotypic resistance testing should be done at entry into care and upon ART changes due to presumed virologic failure.

If abacavir is to be given, HLA-B*5701 status must be tested; abacavir should be given only to patients who are HLA-B*5701–negative. This testing is most often done at entry into care so that safety of possible future use of abacavir is known.

If children have a stable treatment status, ie, nondetectable HIV RNA and normal age-adjusted CD4+ lymphocyte counts without clinical signs of toxicity for at least 12 months, and a stable family support system, many clinicians will extend the interval of laboratory evaluations to every 6 to 12 months. However, clinical care visits every 3 months with measurement of HIV plasma viral load are valuable because clinicians have the opportunity to review adherence, monitor growth and clinical symptoms, and update weight-based dosing of ARV medications as needed.

Prevention of opportunistic infections

Prophylactic treatment is recommended in certain children with HIV infection for prevention of Pneumocystis pneumonia Pneumocystis jirovecii Pneumonia Pneumocystis jirovecii, an atypical fungus, is a common cause of pneumonia in immunosuppressed patients, especially in those infected with human immunodeficiency virus (HIV) and in those... read more <i >Pneumocystis jirovecii</i> Pneumonia and M. avium complex infections. Data are limited on the use of prophylaxis for opportunistic infection by other organisms, such as cytomegalovirus, fungi, and Toxoplasma. Guidance on prophylaxis of these and other opportunistic infections is also available at ClinicalInfo.HIV.gov.

Prophylaxis against Pneumocystis pneumonia is indicated for

  • Children with HIV infection who are 6 years of age with CD4+ count < 200 cells/mcL or CD4+ percentage < 14%

  • Children with HIV infection who are 1 to < 6 years of age with CD4+ count < 500 cells/mcL or CD4+ percentage < 22%

  • Infants with HIV infection who are < 12 months of age regardless of CD4+ count or percentage

  • Infants born to women with HIV infection (beginning at 4 to 6 weeks of age) until HIV infection is either presumptively excluded by documentation of 2 negative virologic test results (1 at 2 weeks of age and 1 at 4 weeks of age) or definitively excluded by documentation of 2 negative virologic test results (1 at 1 month of age and 1 at 4 months of age) (NOTE: For these definitions of HIV exclusion to be valid, the infant must not be breastfeeding.)

Once immune reconstitution with combination ART occurs, discontinuation of Pneumocystis pneumonia prophylaxis may be considered for children with HIV infection who have received combination ART for > 6 months and whose CD4+ percentage and CD4+ count have remained higher than the previously described treatment thresholds for > 3 consecutive months. Subsequently, the CD4+ percentage and count should be reevaluated at least every 3 months, and prophylaxis should be reinstituted if the original criteria are reached.

The medication of choice for Pneumocystis prophylaxis at any age is trimethoprim/sulfamethoxazole (TMP/SMX). The dosage is TMP 75 mg/SMX 375 mg/m2 orally 2 times a day on 3 consecutive days/week (eg, Monday-Tuesday-Wednesday); alternative schedules include the same dose 2 times a day every day, the same dose 2 times a day on alternate days, or twice the dose (TMP 150 mg/SMX 750 mg/m2) once a day for 3 consecutive days/week. Some experts find it easier to use weight-based dosing (TMP 2.5 to 5 mg/SMX 12.5 to 25 mg/kg orally 2 times a day).

For patients who cannot tolerate TMP/SMX, dapsone 2 mg/kg (not to exceed 100 mg) orally once a day is an alternative, especially for those < 5 years of age. Oral atovaquone given daily or aerosolized pentamidine (300 mg via specially designed inhaler for children ≥ 5 years) given once a month is an additional alternative. IV pentamidine has also been used but is less effective and more toxic.

Prophylaxis against M. avium complex infection is indicated in

  • Children 6 years with CD4+ count < 50 cells/mcL

  • Children 2 to 6 years with CD4+ count < 75 cells/mcL

  • Children 1 to 2 years with CD4+ count < 500 cells/mcL

  • Children < 1 year with CD4+ count < 750 cells/mcL

Weekly azithromycin or daily clarithromycin is the medication of choice, and daily rifabutin is an alternative.

Psychosocial approach to children with HIV infection

HIV infection in a child affects the entire family. Serologic testing of siblings and parents is recommended for those families with a child with perinatally acquired infection. This may not be necessary for those families without known HIV infection who adopt a child with HIV infection. The physician must provide education and ongoing counseling.

Children with HIV infection should be taught good hygiene and behavior to reduce risk to others. How much and when children are told about the illness depends on age and maturity. Older children and adolescents should be made aware of their diagnosis and the possibility of sexual transmission and should be counseled appropriately. Families may be unwilling to share the diagnosis with people outside the immediate family because it can create social isolation. Feelings of guilt are common. Family members, including children, can become clinically depressed and require counseling.

Because HIV infection is not acquired through the typical types of contact that occur among children (eg, through saliva or tears), children with HIV infection should be allowed to attend school without restrictions. Similarly, there are no inherent reasons to restrict foster care, adoptive placement, or child care of children with HIV infection. Conditions that may pose an increased risk to others (eg, aggressive biting or the presence of exudative, weeping skin lesions that cannot be covered) may require special precautions.

The number of school personnel aware of the child’s condition should be kept to the minimum needed to ensure proper care. The family has the right to inform the school, but people involved in the care and education of a child with HIV infection must respect the child’s right to privacy. Disclosures of information should be made only with the informed consent of the parents or legal guardians and age-appropriate assent of the child.

Routine vaccinations

The main exception is that live-virus vaccines and live-bacteria vaccines (eg, bacille Calmette–Guérin [BCG]) should be avoided or used only in certain circumstances (see table ).

Live oral poliovirus vaccine (which is not available in the United States but is still used in other parts of the world) and live-attenuated influenza vaccine are not recommended; however, inactivated polio vaccine should be given according to the routine schedule, and inactivated influenza vaccination Influenza Vaccine Based on recommendations by the World Health Organization and the Centers for Disease Control and Prevention (CDC), vaccines for influenza are modified annually to include the most prevalent... read more should be given yearly.

The live measles-mumps-rubella (MMR) vaccine Measles, Mumps, and Rubella (MMR) Vaccine The measles/mumps/rubella vaccines (MMR vaccines) effectively protect against all 3 infections ( measles, mumps, rubella). Historically, people who are given the MMR vaccine according to the... read more and varicella vaccine Varicella Vaccine Varicella vaccination provides effective protection against varicella (chickenpox). It is not known how long protection against varicella lasts. But, live-virus vaccines, like the varicella... read more should not be given to children with manifestations of severe immunosuppression. However, the MMR and varicella-zoster virus (VZV) vaccines (separately; not combined as MMRV vaccine, which has a higher titer of attenuated varicella virus, the safety of which has not been shown in this population) can be given to asymptomatic patients following the routine schedule and to patients who have had HIV symptoms but who are not severely immunocompromised (ie, not in category 3 [see table ], including having a CD4+ T-cell percentage of 15%). If possible, the MMR and VZV vaccines should be given starting at age 12 months in symptomatic patients to enhance the likelihood of an immune response, ie, before the immune system deteriorates. The second dose of each may be given as soon as 4 weeks later in an attempt to induce seroconversion as early as possible, although typically a 3-month interval between varicella vaccine doses is preferred in noninfected children < 13 years. If the risk of exposure to measles is increased, such as during an outbreak, the measles vaccine should be given at an earlier age, such as 6 to 9 months.

The live oral rotavirus vaccine may be given to infants who are exposed to HIV or who are infected with HIV according to the routine schedule Childhood Vaccination Schedules Vaccination has been extremely effective in preventing serious disease and in improving health worldwide. Because of vaccines, infections that were once very common and/or fatal (eg, smallpox... read more . Safety and efficacy data are limited in symptomatic infants but there very likely is overall benefit to immunization, particularly in areas where rotavirus causes significant mortality.

The BCG vaccine is not recommended in the United States because it is an area of low tuberculosis (TB) prevalence. However, elsewhere in the world, especially in countries where TB prevalence is high, BCG is routinely used; many of these countries also have high HIV prevalence among childbearing women. BCG as a live bacterial vaccine has caused some harm in children with HIV infection but likely protects children who do not have HIV infection and even some children who do have HIV infection from acquiring TB. The World Health Organization (WHO) now recommends that children who are known to be HIV-infected, even if asymptomatic, should no longer be immunized with BCG vaccine. However, BCG may be given to asymptomatic infants of unknown HIV infection status born to women with HIV infection, depending on the relative incidence of TB and HIV in the particular area. BCG also may be given to asymptomatic infants born to women of unknown HIV infection status.

Because children with symptomatic HIV infection generally have poor immunologic responses to vaccines, they should be considered susceptible when they are exposed to a vaccine-preventable disease (eg, measles, tetanus, varicella) regardless of their vaccination history. Such children should receive passive immunization with IV immune globulin. IV immune globulin also should be given to any nonimmunized household member who is exposed to measles.

Seronegative children living with a person with symptomatic HIV infection should receive inactivated poliovirus vaccine Poliomyelitis Vaccine Extensive vaccination has almost eradicated polio worldwide. But cases still occur in areas with incomplete immunization, such as sub-Saharan Africa and southern Asia. There are 3 serotypes... read more rather than oral polio vaccine. Influenza (inactivated or live), MMR, varicella, and rotavirus vaccines may be given normally because these vaccine viruses are not commonly transmitted by the vaccinee. Adult household contacts should receive annual influenza vaccination (inactivated or live) to reduce the risk of transmitting influenza to the person with HIV infection.

Additional recommendations for children with HIV infection are

Table

Treatment reference

  • 1. Kobayashi M, Farrar JL, Gierke R, et al: Use of 15-valent pneumococcal conjugate vaccine among U.S. children: Updated recommendations of the Advisory Committee on Immunization Practices—United States, 2022. MMWR Morb Mortal Wkly Rep 71(37):1174–1181, 2022. doi: 10.15585/mmwr.mm7137a3

Transition to Adult Care

Transition of youth with HIV infection from the pediatric health care model to the adult health care model takes time and advance planning. This process is active and ongoing and does not simply involve a one-time referral to an adult care clinic or office. The pediatric health care model tends to be family-centered, and the care team includes a multidisciplinary team of physicians, nurses, social workers, and mental health professionals; perinatally infected youth may have been cared for by such a team for their entire life.

In contrast, the typical adult health care model tends to be individual-centered, and the health care practitioners involved may be located in separate offices requiring multiple visits. Health care practitioners at adult care clinics and offices are often managing high patient volumes, and the consequences of lateness or missed appointments (which may be more common among adolescents) are stricter. Finally, changes in insurance coverage in adolescence or young adulthood can complicate transition of medical care as well.

Planning transition over several months and having adolescents have discussions or joint visits with the pediatric and adult health care practitioners can lead to a smoother and more successful transition. A resource for transition of youth with HIV infection into adult health care is available from the American Academy of Pediatrics (see Transitioning HIV-Infected Youth Into Adult Health Care).

Prognosis for HIV Infection in Infants and Children

In the pre-ART era, 10 to 15% of children from high-resource countries and perhaps 50 to 80% of children from low-resource countries died before age 4 years; however, with appropriate combination ART regimens, most perinatally infected children survive well into adulthood. Increasing numbers of these perinatally infected young adults have given birth to or fathered their own children.

Nevertheless, if opportunistic infections occur, particularly Pneumocystis pneumonia, progressive neurologic disease, or severe wasting, the prognosis is poor unless virologic and immunologic control is regained with combination ART. Mortality due to Pneumocystis pneumonia ranges from 5 to 40% if treated and is almost 100% if untreated. Prognosis is also poor for children in whom virus is detected early (ie, by 7 days of life) or who develop symptoms in the first year of life.

There have been several reported cases of adults in whom replication-competent HIV was eradicated (ie, these people were "cured" for > 5 years). These adults each required a hematopoietic stem cell transplant for leukemia. The donor cells were homozygous for the CCR5-delta 32 mutation, which made the engrafted lymphocytes resistant to infection with CCR5-tropic HIV; subsequently, HIV has remained undetectable. It is likely that ART, bone marrow ablation, and graft-vs-host disease also contributed to these cures.

At least one infant born to a mother with HIV infection who had not received prenatal care or prenatal (or intrapartum) ART was preliminarily thought to have been cured but upon further clinical follow-up was found to have persistent HIV infection. This infant was given combination ART at high doses (not yet known to be safe and effective for general use) beginning on day 2 of life through 15 months of age, after which time it was inadvertently interrupted. Nevertheless, at 24 months of age the infant had no detectable replicating virus RNA (a "functional cure") but did have detectable proviral DNA. Subsequently, however, HIV replication ensued. No infants or children have been permanently cured of their HIV infection, and it is not yet known if cure is possible.

What is known, however, is that HIV infection is a treatable infection that is already compatible with long-term survival if effective ART is given. Future research will undoubtedly uncover ways to improve ART tolerance and efficacy and perhaps help achieve the goal of curative therapy. At present, interruption of ART in either infancy, childhood, or adulthood is not recommended.

Prevention of HIV Infection in Infants and Children

Prevention of perinatal transmission

Appropriate prenatal ART attempts to optimize maternal health, interrupt MTCT, and minimize in utero drug toxicity. In the United States and other countries where ARV medications and HIV testing are readily available, treatment with ARV medications is standard for all pregnant women with HIV infection (see treatment of HIV infection in adults Treatment Human immunodeficiency virus (HIV) infection results from 1 of 2 similar retroviruses (HIV-1 and HIV-2) that destroy CD4+ lymphocytes and impair cell-mediated immunity, increasing risk of certain... read more Treatment ). Rapid HIV testing of pregnant women who present in labor without documentation of their HIV serostatus may allow immediate institution of such measures.

All pregnant women with HIV infection should initiate combination ART to prevent MTCT, as well as for their own health, as soon as the diagnosis of HIV infection is made and they are ready to adhere to ART. Combination ART is continued throughout pregnancy. Pregnancy is not a contraindication to combination ART regimens; specifically, neither dolutegravir nor efavirenz is contraindicated during the first trimester. Although a clinical trial in Botswana initially showed a link between periconceptional exposure to dolutegravir and a small increase in infant neural tube defects, the apparent increase was not present after further study, and it is unknown whether this increase was truly due to dolutegravir or to another factor, such as folate deficiency. The majority of experts believe that women with HIV infection already receiving combination ART who become pregnant should continue that therapy, even early during the first trimester.

Elective cesarean delivery before onset of labor is recommended if the maternal HIV plasma viral load is > 1000 copies/mL. If labor has already begun, it is less certain whether cesarean delivery reduces MTCT.

When patients present in labor, zidovudine (ZDV) is given at 2 mg/kg IV for the first hour and then at 1 mg/kg/hour IV until delivery to women who have ≥ 1 of the following:

  • Recent HIV plasma viral load > 1000 copies/mL

  • Unknown HIV plasma viral load near delivery

  • Are thought to have had incomplete adherence to ART

Many experts now believe that IV ZDV is not required during labor for women receiving combination ART who have achieved HIV plasma viral loads < 50 copies/mL near delivery. However, IV ZDV should be considered for women with a viral load of 50 to 999 copies/mL at or near delivery; it may provide additional protection against perinatal transmission.

After delivery, combination ART is continued for all women, even those who had not previously received ART.

All newborns exposed to HIV should receive a postpartum ARV regimen to reduce the risk of HIV infection. Treatment should begin as soon as possible, preferably within 6 to 12 hours of delivery. The ARV regimen is determined by maternal and infant risk factors for perinatal HIV transmission (see the Panel on Antiretroviral Therapy and Medical Management of Children Living with HIV's Maternal HIV Testing and Identification of Perinatal HIV Exposure recommendations).

Preventive regimens are categorized as

  • ARV prophylaxis

  • Presumptive HIV therapy

Low-risk infants are candidates for ARV prophylaxis. They include full-term neonates born to women who have had sustained virologic suppression with ART (as shown by an HIV plasma viral load < 50 copies/mL) near delivery and in whom there are no concerns related to adherence to ART.

Low-risk infants should be given ARV prophylaxis with ZDV 4 mg/kg orally twice daily for the first 4 weeks of life. ZDV is the backbone of infant prophylaxis and is used for all infants born to women with HIV infection regardless of the risk factors.

Some experts advise ZDV may be given for 2 weeks to select infants born at ≥ 37 weeks gestation to women who meet low-risk criteria, who have been given ART for more than 10 consecutive weeks, and who have maintained viral suppression for the duration of the pregnancy (see the Panel on Antiretroviral Therapy and Medical Management of Children Living with HIV's Management of Infants Born to People with HIV Infection).

High-risk infants are given presumptive HIV therapy (see table ) with a three-drug regimen of zidovudine, lamivudine, and either nevirapine or raltegravir (for dosing, see table ) for up to 6 weeks or, rarely, longer. This therapy initially serves as prophylaxis but also as preliminary treatment for those later confirmed to have HIV.

Very few ARV medications (notably ZDV, nevirapine, lamivudine, abacavir, and raltegravir) are considered safe and effective for infants < 14 days postnatal age, and fewer still (only zidovudine, lamivudine, nevirapine, and, for late preterm infants, raltegravir) have dosing data available for preterm infants. The optimal ARV regimen for neonates born to women with ARV drug-resistant virus is unknown.

Infants who subsequently have a positive HIV virologic test are given ART with three medications as appropriate for treatment of known HIV infection. An expert in pediatric or maternal HIV infection should be immediately consulted (see information at ClinicalInfo.HIV.gov or at the National Clinician Consultation Center). Clinicians also can call the Perinatal HIV Consultation and Referral Services Hotline at 1-888-HIV-8765 (1-888-448-8765) for questions regarding interventions to decrease vertical HIV transmission and neonatal diagnosis.

Table
Table

Some mothers with HIV infection who live in the United States or in other countries where safe, affordable, and alternative sources of feeding are available may choose to breastfeed if they are receiving ART and have a sustained, undetectable viral load. The decision to breastfeed should be made only after counseling and shared decision-making discussions. Some recommendations for continuing neonatal ARV prophylaxis and using an increased diagnostic testing frequency in this situation have been suggested, but a consensus has not yet been reached because data are incomplete. An expert in pediatric HIV infection should be consulted (see Panel on Antiretroviral Therapy and Medical Management of Children Living with HIV's Infant Feeding for Individuals with HIV in the United States).

Additionally, in countries where infectious diseases and undernutrition are major causes of early childhood mortality and safe, affordable infant formula is not available, the protection breastfeeding offers against the mortality risks of respiratory and gastrointestinal infections may counterbalance the risk of HIV transmission. In these countries, the World Health Organization (WHO) recommends mothers with HIV infection continue to breastfeed for at least 12 months of the infant's life (see the WHO's Guideline: Updates on HIV and Infant Feeding).

Donating to milk banks is contraindicated for women with HIV infection in the United States and in other countries where safe and affordable alternative sources of feeding are readily available.

Premastication (prechewing) of food, practiced by some mothers of young infants, is also contraindicated for women with HIV infection.

Prevention of adolescent transmission

Because adolescents are at special risk of HIV infection, they should receive education, have access to HIV testing, and know their serostatus. Education should include information about transmission, implications of infection, and strategies for prevention, including abstaining from high-risk behaviors and engaging in safe sex practices (eg, correct and consistent use of condoms Condoms Barrier contraceptives include condoms, diaphragms, cervical caps, and contraceptive sponges. Other pericoital contraceptives include vaginal spermicides (foams, creams, gels, suppositories)... read more ) for those who are sexually active. Efforts should especially target adolescents at high risk of HIV infection, in particular, Black and Hispanic adolescent men who have sex with other men because these are the fastest-growing US demographics of new HIV infections among youth; however, all adolescents should receive risk-reduction education.

In most US states, informed consent is necessary for testing and the release of information regarding HIV serostatus. Decisions regarding disclosure of HIV status to a sex partner without the patient’s consent should be based on the following:

  • Possibility of intimate partner violence to the patient after disclosure to the partner

  • Likelihood that the partner is at risk

  • Whether the partner has reasonable cause to suspect the risk and to take precautions

  • Presence of a legal requirement to withhold or disclose such information

Pre-exposure prophylaxis (PrEP)

PrEP is the use of ARV medications by people who are not infected with HIV but who are at high risk of becoming infected (eg, by having a sex partner with HIV infection). Commonly, PrEP is a combination of tenofovir disoproxil fumarate/emtricitabine (TDF/FTC); less commonly, PrEP is a combination of tenofovir alafenamide/emtricitabine (TAF/FTC), which still has very high efficacy. PrEP does not eliminate the need to use other methods of reducing risk of HIV infection, including using condoms correctly and avoiding high-risk behaviors (eg, needle sharing).

Data regarding infants of HIV-negative mothers taking TDF/FTC PrEP during pregnancy are incomplete, but, currently, no adverse effects have been reported in children born to women with HIV infection treated with TDF/FTC. Use of PrEP to reduce the risk of HIV infection in injection drug users is being studied.

Adolescents in the United States often face a barrier to seeking sexually transmitted infection and HIV services partly because they fear breach of confidentiality (that is, that their parents or guardians will be told). This has been a barrier to administration of PrEP to adolescents as well. Issues of cost (with possible lack of insurance reimbursement) also may be more complex for adolescents receiving PrEP than for adults receiving PrEP. Despite these potential barriers, PrEP for sexually active adolescents, particularly those with high-risk sexual behavior, should be strongly considered. A recent compendium of minor consent laws for sexually transmitted infections and HIV services is available to help guide clinicians (1 PrEP reference Human immunodeficiency virus (HIV) infection is caused by the retrovirus HIV-1 (and less commonly by the related retrovirus HIV-2). Infection leads to progressive immunologic deterioration and... read more PrEP reference ).

Long-acting injectable ARV medications such as cabotegravir are also being studied to further improve PrEP in high-risk populations with poor medication adherence. For current CDC recommendations, see Pre-Exposure Prophylaxis (PrEP). For further discussion, see PrEP to Prevent HIV and Promote Sexual Health from the New York State Department of Health AIDS Institute.

PrEP reference

  • 1. Nelson KM, Skinner A, Underhill K: Minor consent laws for sexually transmitted infection and HIV services. JAMA 328(7):674–676, 2022. doi: 10.1001/jama.2022.10777

Key Points

  • Most HIV cases in infants and children result from mother-to-child transmission (MTCT) before or during birth, or from breastfeeding in countries where safe and affordable infant formula is not available.

  • Maternal antiretroviral therapy (ART) can reduce incidence of MTCT from about 25% to < 1%.

  • Neonates born to women living with HIV infection are treated for a short time with antiretroviral (ARV) medications to interrupt MTCT.

  • Diagnose children < 18 months using qualitative HIV RNA or RNA/DNA assays (eg, transcription-mediated amplification of RNA).

  • Diagnose children > 18 months using a 4th-generation HIV-1/2 antigen/antibody combination immunoassay followed by a 2nd-generation HIV-1/2 antibody differentiation assay and, if required, an HIV-1 qualitative RNA assay.

  • Urgently treat (using rapid initiation) all infants with HIV infection < 12 months of age; those 1 to < 6 years of age who have stage 3–defining opportunistic infections or CD4 counts < 500 cells/mcL; and those ≥ 6 years of age who have stage 3–defining opportunistic infections or CD4 counts < 200 cells/mcL.

  • Treat all other children and adolescents with HIV infection as soon as issues of adherence are more fully assessed and addressed with the children and their caretakers.

  • Combination ART is given, preferably using a fixed-dose combination product if feasible, for increased adherence.

  • Adolescents who do not have HIV infection may be given PrEP to prevent acquisition of HIV infection, but issues of confidentiality and cost may be more problematic than for adults receiving PrEP.

  • Give prophylaxis for opportunistic infections based on age and CD4+ count.

More Information

The following English-language resources may be useful. Please note that THE MANUAL is not responsible for the content of these resources.

See the following US government sites for information on drug treatment, including adverse effects, dosing (especially for information on fixed-dose combination products), and drug interactions, educational materials, and quick links to related topics:

The following resources provide information about various other prevention, treatment, and education aspects of HIV/AIDS:

Drugs Mentioned In This Article

Drug Name Select Trade
Retrovir
Albuked , Albumarc, Albuminar, Albuminex, AlbuRx , Albutein, Buminate, Flexbumin, Kedbumin, Macrotec, Plasbumin, Plasbumin-20
Ziagen, Ziagen Solution
Primsol, Proloprim, TRIMPEX
Aczone
Mepron
NebuPent, Pentam
Azasite, Zithromax, Zithromax Powder, Zithromax Single-Dose , Zithromax Tri-Pak, Zithromax Z-Pak, Zmax, Zmax Pediatric
Biaxin, Biaxin XL
Mycobutin
Rotarix, RotaTeq
STAMARIL, YF-Vax
Engerix-B, Engerix-B Pediatric, H-B-Vax, HEPLISAV-B, PreHevbrio, RDNA H-B Vax II, Recombivax HB, Recombivax HB Pediatric/Adolescent
TIVICAY, Tivicay PD
Sustiva
Epivir, Epivir HBV
Viramune, Viramune Suspension, Viramune XR
Isentress, Isentress HD
Viread
Emtriva
Vemlidy
Apretude, VOCABRIA
View PATIENT EDUCATION
NOTE: This is the Professional Version. CONSUMERS: View Consumer Version
quiz link

Test your knowledge

Take a Quiz! 
iOS ANDROID
iOS ANDROID
iOS ANDROID
TOP