Find information on medical topics, symptoms, drugs, procedures, news and more, written for the health care professional.

* This is a professional Version *

Neonatal Sepsis

(Sepsis Neonatorum)

by Mary T. Caserta, MD

Neonatal sepsis is invasive infection, usually bacterial, occurring during the neonatal period. Signs are multiple and include diminished spontaneous activity, less vigorous sucking, apnea, bradycardia, temperature instability, respiratory distress, vomiting, diarrhea, abdominal distention, jitteriness, seizures, and jaundice. Diagnosis is clinical and based on culture results. Treatment is initially with ampicillin plus either gentamicin or cefotaxime, narrowed to organism-specific drugs as soon as possible.

Neonatal sepsis occurs in 0.5 to 8.0/1000 births. The highest rates occur in low-birth-weight (LBW) infants, those with depressed function at birth as manifested by a low Apgar score ( Perinatal Problems:Assessment), those with maternal perinatal risk factors (eg, low socioeconomic status, premature rupture of membranes [PROM]), minorities, and males.

Etiology

Onset of neonatal sepsis can be early (≤ 3 days of birth) or late (after 3 days).

Early onset

Early-onset sepsis usually results from organisms acquired intrapartum. Most infants have symptoms within 6 h of birth.

Group B streptococcus (GBS) and gram-negative enteric organisms (predominantly Escherichia coli) account for most cases of early-onset sepsis. Vaginal or rectal cultures of women at term may show GBS colonization rates of up to 35%. At least 35% of their infants also become colonized. The density of infant colonization determines the risk of early-onset invasive disease, which is 40 times higher with heavy colonization. Although only 1/100 of infants colonized develop invasive disease due to GBS, > 50% of those present within the first 6 h of life. Nontypeable Haemophilus influenzae sepsis has also been identified in neonates, especially premature neonates.

Other gram-negative enteric bacilli (eg, Klebsiella sp) and gram-positive organisms— Listeria monocytogenes, enterococci (eg, Enterococcus faecalis, E. faecium), group D streptococci (eg, Streptococcus bovis), α-hemolytic streptococci, and staphylococci—account for most other cases. S. pneumoniae, H. influenzae type b, and, less commonly, Neisseria meningitidis have been isolated. Asymptomatic gonorrhea occurs occasionally in pregnancy, so N. gonorrhoeae may rarely be a pathogen.

Late onset

Late-onset sepsis is usually acquired from the environment (see Neonatal Hospital-Acquired Infection). Staphylococci account for 30 to 60% of late-onset cases and are most frequently due to intravascular devices (particularly central vascular catheters). E. coli is also becoming increasingly recognized as a significant cause of late-onset sepsis, especially in extremely LBW infants. Isolation of Enterobacter cloacae or Cronobacter (formerly Enterobacter) sakazakii from blood or CSF may be due to contaminated feedings. Contaminated respiratory equipment is suspected in outbreaks of hospital-acquired Pseudomonas aeruginosa pneumonia or sepsis. Although universal screening and intrapartum antibiotic prophylaxis for GBS have significantly decreased the rate of early-onset disease due to this organism, the rate of late-onset GBS sepsis has remained unchanged, which is consistent with the hypothesis that late-onset disease is usually acquired from the environment.

The role of anaerobes (particularly Bacteroides fragilis) in late-onset sepsis remains unclear, although deaths have been attributed to Bacteroides bacteremia.

Candida sp are increasingly important causes of late-onset sepsis, occurring in 12 to 18% of extremely LBW infants.

Early and late onset

Certain viral infections (eg, disseminated herpes simplex, enterovirus, adenovirus, respiratory syncytial virus) may manifest as early-onset or late-onset sepsis.

Pathophysiology

Early onset

Certain maternal perinatal and obstetric factors increase risk, particularly of early-onset sepsis, such as the following:

  • PROM (see Premature Rupture of Membranes (PROM)) occurring 18 h before birth

  • Maternal chorioamnionitis (most commonly manifesting as maternal fever shortly before or during delivery with maternal leukocytosis, tachycardia, uterine tenderness, and/or foul-smelling amniotic fluid)

  • Colonization with GBS

  • Preterm delivery

Hematogenous and transplacental dissemination of maternal infection occurs in the transmission of certain viral (eg, rubella, cytomegalovirus), protozoal (eg, Toxoplasma gondii), and treponemal (eg, Treponema pallidum) pathogens. A few bacterial pathogens (eg, L. monocytogenes, Mycobacterium tuberculosis) may reach the fetus transplacentally, but most are acquired by the ascending route in utero or as the fetus passes through the colonized birth canal.

Though the intensity of maternal colonization is directly related to risk of invasive disease in the neonate, many mothers with low-density colonization give birth to infants with high-density colonization who are therefore at risk. Amniotic fluid contaminated with meconium or vernix caseosa promotes growth of GBS and E. coli. Hence, the few organisms in the vaginal vault are able to proliferate rapidly after PROM, possibly contributing to this paradox. Organisms usually reach the bloodstream by fetal aspiration or swallowing of contaminated amniotic fluid, leading to bacteremia. The ascending route of infection helps to explain such phenomena as the high incidence of PROM in neonatal infections, the significance of adnexal inflammation (amnionitis is more commonly associated with neonatal sepsis than is central placentitis), the increased risk of infection in the twin closer to the birth canal, and the bacteriologic characteristics of neonatal sepsis, which reflect the flora of the maternal vaginal vault.

Late onset

The most important risk factor in late-onset sepsis is preterm delivery. Others include

  • Prolonged use of intravascular catheters

  • Associated illnesses (which may, however, be only a marker for the use of invasive procedures)

  • Exposure to antibiotics (which selects resistant bacterial strains)

  • Prolonged hospitalization

  • Contaminated equipment or IV or enteral solutions

Gram-positive organisms (eg, coagulase-negative staphylococci and Staphylococcus aureus) may be introduced from the environment or the patient’s skin. Gram-negative enteric bacteria are usually derived from the patient’s endogenous flora, which may have been altered by antecedent antibiotic therapy or populated by resistant organisms transferred from the hands of personnel (the major means of spread) or contaminated equipment. Therefore, situations that increase exposure to these bacteria (eg, crowding, inadequate nurse staffing or provider hand washing) result in higher rates of hospital-acquired infection. Risk factors for Candida sp sepsis include prolonged (> 10 days) use of central IV catheters, hyperalimentation, use of antecedent antibiotics (especially 3rd-generation cephalosporins), and abdominal pathology.

Initial foci of infection can be in the urinary tract, paranasal sinuses, middle ear, lungs, or GI tract, and may later disseminate to meninges, kidneys, bones, joints, peritoneum, and skin.

Symptoms and Signs

Early signs are frequently nonspecific and subtle and do not distinguish among organisms (including viral). Particularly common early signs include

  • Diminished spontaneous activity

  • Less vigorous sucking

  • Anorexia

  • Apnea

  • Bradycardia

  • Temperature instability (hypothermia or hyperthermia)

Fever is present in only 10 to 15% but, when sustained (eg, > 1 h), generally indicates infection. Other symptoms and signs include respiratory distress, neurologic findings (eg, seizures, jitteriness), jaundice (especially occurring within the first 24 h of life without Rh or ABO blood group incompatibility and with a higher than expected direct bilirubin concentration), vomiting, diarrhea, and abdominal distention.

Specific signs of an infected organ may pinpoint the primary site or a metastatic site.

  • Most neonates with early-onset GBS (and many with L. monocytogenes) infection present with respiratory distress that is difficult to distinguish from respiratory distress syndrome.

  • Periumbilical erythema, discharge, or bleeding without a hemorrhagic diathesis suggests omphalitis (infection prevents obliteration of the umbilical vessels).

  • Coma, seizures, opisthotonos, or a bulging fontanelle suggests meningitis, encephalitis, or brain abscess.

  • Decreased spontaneous movement of an extremity and swelling, warmth, erythema, or tenderness over a joint indicates osteomyelitis or pyogenic arthritis.

  • Unexplained abdominal distention may indicate peritonitis or necrotizing enterocolitis (particularly when accompanied by bloody diarrhea and fecal leukocytes).

  • Cutaneous vesicles, mouth ulcers, and hepatosplenomegaly (particularly with disseminated intravascular coagulation [DIC]) can indicate disseminated herpes simplex.

Early-onset GBS infection may manifest as a fulminating pneumonia. Often, obstetric complications (particularly prematurity, PROM, or chorioamnionitis) have occurred. In > 50% of neonates, GBS infection manifests within 6 h of birth; 45% have an Apgar score of < 5. Meningitis may also be present but is not common. In late-onset GBS infection (at > 3 days to 12 wk), meningitis is often present. Late-onset GBS infection is generally not associated with perinatal risk factors or demonstrable maternal cervical colonization and may be acquired postpartum.

Diagnosis

  • High index of suspicion

  • Blood, CSF, and sometimes urine culture

Early diagnosis is important and requires awareness of risk factors (particularly in LBW neonates) and a high index of suspicion when any neonate deviates from the norm in the first few weeks of life. Neonates with clinical signs of sepsis should have a CBC, differential with smear, blood culture, urine culture (not necessary for evaluation of early-onset sepsis), and lumbar puncture (LP), if clinically feasible, as soon as possible. Neonates with respiratory symptoms require chest x-ray. Diagnosis is confirmed by isolation of a pathogen in culture. Other tests may have abnormal results but are not necessarily diagnostic.

Preterm neonates who appear well but who have risk factors for early-onset sepsis (eg, inadequate maternal intrapartum antibiotic prophylaxis (IAP) for GBS, chorioamnionitis, PROM ≥ 18 h before birth), along with asymptomatic term infants born to mothers with chorioamnionitis, should have a blood culture at birth and begin empiric broad-spectrum antibiotic therapy. Testing should also include WBC count and differential and C-reactive protein at 6 to 12 h of life. Further management depends on the clinical course and results of the laboratory tests.

For asymptomatic term infants born to mothers with inadequate IAP for GBS or PROM ≥ 18 h before birth, but without chorioamnionitis, CBC count with differential and perhaps a C-reactive protein level is recommended at 6 to 12 h of life. The infant is observed without antimicrobial therapy; the clinical course and results of the laboratory evaluation guide management.

CBC, differential, and smear

The total WBC count and absolute band count in neonates are poor predictors of early-onset sepsis. However, an elevated ratio of immature:total polymorphonuclear leukocytes of > 0.16 is sensitive, and values below this cutoff have a high negative predictive value. However, specificity is poor; up to 50% of term neonates have an elevated ratio. Values obtained after 6 h of life are more likely to be abnormal and clinically useful than those obtained immediately after birth.

The platelet count may fall hours to days before the onset of clinical sepsis but more often remains elevated until a day or so after the neonate becomes ill. This fall is sometimes accompanied by other findings of DIC (eg, increased fibrin degradation products, decreased fibrinogen, prolonged INR). Given the timing of these changes, the platelet count is not typically helpful in evaluating a neonate for sepsis.

Because of large numbers of circulating bacteria, organisms can sometimes be seen in or associated with PMNs by applying Gram stain, methylene blue, or acridine orange to the buffy coat.

Regardless of the results of CBC or LP, in all neonates with suspected sepsis (eg, those who look sick or are febrile or hypothermic), antibiotics should be started after cultures (eg, blood and CSF [if possible]) are taken.

Lumbar puncture

There is a risk of increasing hypoxia during an LP in already hypoxemic neonates. However, LP should be done in neonates with suspected sepsis as soon as they are able to tolerate the procedure (see also Diagnosis under Neonatal Bacterial Meningitis). Supplemental O 2 is given before and during LP to prevent hypoxia. Because GBS pneumonia manifesting in the first day of life can be confused with respiratory distress syndrome, LP is often done routinely in neonates suspected of having these diseases.

Blood cultures

Umbilical vessels are frequently contaminated by organisms on the umbilical stump, especially after a number of hours, so blood cultures from umbilical venous lines may not be reliable. Therefore, blood for culture should be obtained by venipuncture, preferably at 2 peripheral sites. Although the optimal skin preparation to perform before obtaining blood cultures in neonates is not defined, clinicians can apply an iodine-containing liquid and allow the site to dry. Alternatively, blood obtained soon after placement of an umbilical arterial catheter may also be used for culture if necessary. Blood should be cultured for both aerobic and anaerobic organisms. However, the minimum amount of blood per blood culture bottle is 1.0 mL; if < 2 mL is obtained, it should all be placed in a single aerobic blood culture bottle. If catheter-associated sepsis is suspected, a culture specimen should be obtained through the catheter as well as peripherally. In > 90% of positive bacterial blood cultures, growth occurs within 48 h of incubation. Data on capillary blood cultures are insufficient to recommend them.

Candida sp grow in blood cultures and on blood agar plates, but if other fungi are suspected, a fungal culture medium should be used. For species other than Candida, fungal blood cultures may require 4 to 5 days of incubation before becoming positive and may be negative even in obviously disseminated disease. Proof of colonization (in mouth or stool or on skin) may be helpful before culture results are available. Neonates with candidemia should undergo LP to identify candidal meningitis. Indirect ophthalmoscopy with dilation of the pupils is done to identify retinal candidal lesions. Renal ultrasonography is done to detect renal mycetoma.

Urinalysis and culture

Urine testing is needed only for evaluation of late-onset sepsis. Urine should be obtained by catheterization or suprapubic aspiration, not by urine collection bags. Although only culture is diagnostic, a finding of 5 WBCs/high-power field in the spun urine or any organisms in a fresh unspun gram-stained sample is presumptive evidence of a UTI. Absence of pyuria does not rule out UTI.

Other tests for infection and inflammation

Numerous tests are often abnormal in sepsis and have been evaluated as possible early markers. In general, however, sensitivities tend to be low until later in illness, and specificities are suboptimal.

Acute-phase reactants are proteins produced by the liver under the influence of IL-1 when inflammation is present. The most valuable of these is quantitative C-reactive protein. A concentration of ≥ 1 mg/dL (measured by nephelometry) is abnormal. Elevated levels occur within 6 to 8 h of developing sepsis and peak at 1 day. The sensitivity of C-reactive protein measurements is higher if measured after 6 to 8 h of life. Two normal values obtained between 8 h and 24 h after birth and then 24 h later have a negative predictive value of 99.7%.

Procalcitonin is being investigated as an acute-phase reactant marker for neonatal sepsis. Although procalcitonin appears more sensitive than C-reactive protein, it is less specific.

Prognosis

The fatality rate is 2 to 4 times higher in LBW infants than in full-term infants. The overall mortality rate of early-onset sepsis is 3 to 40% (that of early-onset GBS infection is 2 to 10%) and of late-onset sepsis is 2 to 20% (that of late-onset GBS is about 2%). Mortality in late-onset sepsis highly depends on the etiology of the infection; infections caused by gram-negative bacilli or Candida spp have rates of up to 32 to 36%. In addition to mortality, extremely LBW infants who develop bacterial or candidal sepsis have a significantly greater risk of poor neurodevelopmental outcome.

Treatment

  • Antibiotic therapy

  • Supportive therapy

Because sepsis may manifest with nonspecific clinical signs and its effects may be devastating, rapid empiric antibiotic therapy is recommended (see Overview of Antibacterial Drugs : Selection and Use of Antibiotics); drugs are later adjusted according to sensitivities and the site of infection.

General supportive measures, including respiratory and hemodynamic management, are combined with antibiotic treatment.

Antimicrobials

In early-onset sepsis, initial therapy should include ampicillin plus an aminoglycoside. Cefotaxime may be added to or substituted for the aminoglycoside if meningitis caused by a gram-negative organism is suspected. Antibiotics may be changed as soon as an organism is identified.

Previously well infants admitted from the community with presumed late-onset sepsis should also receive therapy with ampicillin plus gentamicin or ampicillin plus cefotaxime. If gram-negative meningitis is suspected, ampicillin, cefotaxime, and an aminoglycoside may be used. In late-onset hospital-acquired sepsis, initial therapy should include vancomycin (active against methicillin-resistant S. aureus) plus an aminoglycoside. If P. aeruginosa is prevalent in the nursery, ceftazidime, cefepime, or piperacillin/tazobactam may be used in addition to or instead of an aminoglycoside depending on local susceptibilities. For neonates previously treated with a full 7- to 14-day aminoglycoside course who need retreatment, a different aminoglycoside or a 3rd-generation cephalosporin should be considered.

If coagulase-negative staphylococci are suspected (eg, an indwelling catheter has been in place for > 72 h) or are isolated from blood or other normally sterile fluid and considered a pathogen, initial therapy for late-onset sepsis should include vancomycin. However, if the organism is sensitive to nafcillin, cefazolin or nafcillin should replace vancomycin. Removal of the presumptive source of the organism (usually an indwelling intravascular catheter) may be necessary to cure the infection because coagulase-negative staphylococci may be protected by a biofilm (a covering that encourages adherence of organisms to the catheter).

Because Candida may take 2 to 3 days to grow in blood culture, initiation of amphotericin B therapy and removal of the infected catheter without positive blood or CSF cultures may be life saving.

Other treatment

Exchange transfusions have been used for severely ill (particularly hypotensive and metabolically acidotic) neonates. Their purported value is to increase levels of circulating immunoglobulins, decrease circulating endotoxin, increase Hb levels (with higher 2,3-diphosphoglycerate levels), and improve perfusion. However, no controlled prospective studies of their use have been conducted.

Fresh frozen plasma may help reverse the heat-stable and heat-labile opsonin deficiencies that occur in LBW neonates, but controlled studies of its use are unavailable, and transfusion-associated risks must be considered.

Granulocyte transfusions (see WBCs) have been used in septic and granulocytopenic neonates but have not convincingly improved outcome.

Recombinant colony-stimulating factors (granulocyte colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF]) have increased neutrophil number and function in neonates with presumed sepsis but do not seem to be of routine benefit in neonates with severe neutropenia; further study is required.

Prevention

Giving IV immune globulin to augment the neonate's immune response has not been shown to help prevent or treat sepsis.

Because invasive disease due to GBS often manifests within the first 6 h of life, women who have previously given birth to an infant with GBS disease should receive intrapartum antibiotics, and women who have symptomatic or asymptomatic GBS bacteriuria during pregnancy should receive antibiotics at the time of diagnosis and intrapartum (see see Figure: Indications for intrapartum antibiotic prophylaxis to prevent perinatal group B streptococcal disease.). Additionally, all pregnant women should be screened for GBS colonization late in gestation and should be given IAP based on screening results.

Indications for intrapartum antibiotic prophylaxis to prevent perinatal group B streptococcal disease.

(Adapted from Schrag S, Gorwitz R, Fultz-Butts K, Schuchat A: Prevention of perinatal group B streptococcal disease. Morbidity and Mortality Weekly Report 51(RR-11): 1–22, 2002.)

Key Points

  • Neonatal sepsis can be early onset (≤ 3 days of birth) or late onset (after 3 days).

  • Early-onset sepsis usually results from organisms acquired intrapartum, and symptoms appear within 6 h of birth.

  • Late-onset sepsis is usually acquired from the environment and is more likely in preterm infants, particularly those with prolonged hospitalization, use of IV catheters, or both.

  • Early signs are frequently nonspecific and subtle, and fever is present in only 10 to 15% of neonates.

  • Do blood and CSF cultures and, for late-onset sepsis, also do urine culture.

  • Treat initially with ampicillin plus either gentamicin or cefotaxime, narrowed to organism-specific drugs as soon as possible.

Resources In This Article

Drugs Mentioned In This Article

  • Drug Name
    Select Trade
  • GENOPTIC
  • CLAFORAN
  • No US brand name
  • MAXIPIME
  • FORTAZ, TAZICEF
  • VANCOCIN
  • NALLPEN IN PLASTIC CONTAINER
  • ANCEF, KEFZOL

* This is a professional Version *