Merck Manual

Please confirm that you are a health care professional

honeypot link
Professional Version

Diabetes Insipidus in Animals

By

Deborah S. Greco

, DVM, PhD, DACVIM-SAIM, Desert Veterinary Specialists, Palm Desert, CA

Reviewed/Revised Jul 2019 | Modified Aug 2019

Diabetes insipidus is caused by a lack of antidiuretic hormone (ADH) or an inability of the kidneys to respond to ADH. It results in production of large volumes of dilute urine, which prompts animals affected by it to drink large amounts of water to compensate. Diagnosis is based on finding chronic polyuria that does not respond to dehydration and is not a result of chronic renal disease, followed by an ADH response test. Polyuria may be controlled using desmopressin.

Central diabetes insipidus is caused by reduced secretion of antidiuretic hormone (ADH). When target cells in the kidney lack the biochemical machinery necessary to respond to the secretion of normal or increased circulating levels of ADH, nephrogenic diabetes insipidus results. It occurs infrequently in dogs, cats, and laboratory rats, and rarely in other animals.

Etiology of Diabetes Insipidus in Animals

The hypophyseal form of diabetes insipidus develops as a result of compression and destruction of the pars nervosa, infundibular stalk, or supraoptic nucleus in the hypothalamus. The lesions responsible for the disruption of ADH synthesis or secretion in hypophyseal diabetes insipidus include large pituitary neoplasms (endocrinologically active or inactive), a dorsally expanding cyst or inflammatory granuloma, and traumatic injury to the skull, with hemorrhage and glial proliferation in the neurohypophyseal system.

Clinical Findings of Diabetes Insipidus in Animals

Affected animals excrete large volumes of hypotonic urine and drink equally large amounts of water. Urine osmolality is decreased below normal plasma osmolality (~300 mOsm/kg) in both hypophyseal and nephrogenic forms, even if the animal is deprived of water. The increase of urine osmolality above that of plasma in response to exogenous ADH in the hypophyseal form, but not in the nephrogenic form, is useful in the clinical differentiation of the two forms of the disease.

Lesions

The posterior lobe, infundibular stalk, and hypothalamus are compressed or disrupted by neoplastic cells. This interrupts the nonmyelinated axons that transport ADH from its site of production (hypothalamus) to its site of release (pars nervosa).

Diagnosis of Diabetes Insipidus in Animals

Diagnosis of diabetes insipidus is based on chronic polyuria that does not respond to dehydration and is not due to primary renal disease. To evaluate the ability to concentrate urine, a water deprivation test should be done if the animal is not dehydrated and does not have renal disease. The bladder is emptied, and water and food are withheld (usually 3–8 hours) to provide a maximum stimulus for ADH secretion. The animal should be monitored carefully to prevent a loss of >5% body wt and severe dehydration. Urine and plasma osmolality should be determined; however, because these tests are not readily available to most practitioners, urine specific gravity is frequently used instead. At the end of the test, urine specific gravity is >1.025 in those animals with only a partial ADH deficiency or with antagonism to ADH action caused by hypercortisolism. There is little change in specific gravity in those animals with a complete lack of ADH activity, whether due to a primary loss of ADH or to unresponsiveness of the kidneys.

An ADH response test should follow to differentiate among conditions that may result in large volumes of urine that is chronically low in specific gravity but otherwise normal. These conditions include nephrogenic diabetes insipidus (an inability of the kidneys to respond to ADH), psychogenic diabetes insipidus (a polydipsia in response to some psychological disturbance but a normal response to ADH), and hypercortisolism (which results in a partial deficiency of ADH activity due to the antagonistic effect of cortisol on ADH activity in the kidneys). This test also can be used to evaluate animals in which a water deprivation test could not be performed. Urine specific gravity is determined at the start of the test, desmopressin acetate is administered (2–4 drops in the conjunctival sac), the bladder is emptied after 2 hours, and urine specific gravity is measured at set intervals (4, 8, 12, 18, and 24 hours) after ADH administration. Specific gravity peaks at >1.026 in animals with a primary ADH deficiency, is significantly increased above the level induced with water deprivation in those with a partial deficiency in ADH activity, and shows little change in those with nephrogenic diabetes insipidus.

If osmolality is measured, the ratio of urine to plasma osmolality after water deprivation is >3 in healthy animals, 1.8–3.0 in those with moderate ADH deficiency, and < 1.8 in those with severe deficiency. The ratio of urine osmolality after ADH administration as compared with water deprivation is >2 in animals with primary ADH deficiency, 1.1–2.0 in those with inhibitors to ADH action and < 1.1 in those unresponsive to ADH.

As an alternative to the water deprivation test, or in cases in which this test does not establish a definitive diagnosis, a closely monitored therapeutic trial with desmopressin (see below) can be performed. Again, all other causes of polyuria and polydipsia should initially be excluded, limiting the differential diagnosis to central diabetes insipidus, nephrogenic diabetes insipidus, and psychogenic polydipsia. For cats, the owner should measure the animal’s 24-hour water intake 2–3 days before the therapeutic trial with desmopressin, allowing free-choice water intake. Desmopressin 0.1 mg/mL is administered in the conjunctival sac (1–4 drops, every 12 hours) or as tablets (0.1–0.2 mg, PO, every 12 hours) for 3–5 days under therapeutic trial with desmopressin. A dramatic reduction in water intake (>50%) during the first treatment day strongly suggests an ADH deficiency and a diagnosis of central diabetes insipidus or partial nephrogenic diabetes insipidus.

Diabetes insipidus also needs to be distinguished from other diseases with polyuria. The most common are diabetes mellitus with glycosuria and high urine specific gravity, and chronic nephritis with a urine specific gravity that is usually low and shows evidence of renal failure (protein, casts, etc).

Treatment of Diabetes Insipidus in Animals

  • Desmopressin acetate

Polyuria may be controlled using desmopressin acetate, a synthetic analogue of ADH. The initial dose is desmopressin 0.1 mg/mL nasal solution (2 drops) applied to the nasal mucosae or conjunctivae, or desmopressin tablets (0.1–0.2 mg/dog, PO, every 8–12 hours); this is gradually increased until the minimal effective dose is determined. Maximal effect usually occurs in 2–6 hours and lasts for 10–12 hours. Water should not be restricted. Treatment should be continued once or twice daily for the life of the animal.

Key Points

  • Diabetes insipidus is a rare disorder in dogs and cats, is a result of ADH deficiency, and may be secondary to brain trauma.

  • Diagnosis of central diabetes insipidus may be achieved through the use of a water deprivation test or by showing an increase in urine osmolality after ADH supplementation.

  • The primary treatment is desmopressin acetate, a synthetic analogue of ADH. Treatment intranasally may be effective for dogs.

For More Information

quiz link

Test your knowledge

Take a Quiz!
iOS ANDROID
iOS ANDROID
iOS ANDROID
TOP