Merck Manual

Please confirm that you are a health care professional

honeypot link

Overview of Chromosomal Anomalies


Nina N. Powell-Hamilton

, MD, Sidney Kimmel Medical College at Thomas Jefferson University

Reviewed/Revised Dec 2021 | Modified Sep 2022
View Patient Education

Chromosomal anomalies cause various disorders. Anomalies that affect autosomes (the 22 paired chromosomes that are alike in males and females) are more common than those that affect sex chromosomes (X and Y).

Chromosomal abnormalities fit into several categories but broadly may be considered as numerical or structural.

Numerical abnormalities include

  • Trisomy (an extra chromosome)

  • Monosomy (a missing chromosome)

Structural abnormalities include

  • Translocations (anomalies in which a whole chromosome or segments of chromosomes inappropriately join with other chromosomes)

  • Deletions and duplications of various parts of chromosomes


Some specific terms from the field of genetics are important for describing chromosomal anomalies:

Diagnosis of Chromosomal Anomalies

  • Chromosomal analysis (karyotyping)

  • Banding

  • Fluorescent in situ hybridization (FISH)

  • Chromosomal microarray analysis (array comparative genomic hybridization)

Lymphocytes are typically used for chromosomal analysis, except prenatally, when amniocytes or cells from placental chorionic villi are used (see Amniocentesis Amniocentesis All procedures used to diagnose genetic disorders, except ultrasonography, are invasive and involve slight fetal risk. If testing detects a serious abnormality, the pregnancy can be terminated... read more and Chorionic Villus Sampling Chorionic Villus Sampling All procedures used to diagnose genetic disorders, except ultrasonography, are invasive and involve slight fetal risk. If testing detects a serious abnormality, the pregnancy can be terminated... read more ). A karyotype analysis involves blocking cells in mitosis during metaphase and staining the condensed chromosomes. Chromosomes from single cells are photographed, and their images are arranged, forming a karyotype.

Several techniques are used to better delineate the chromosomes:

  • In classical banding (eg, G [Giemsa]-, Q [fluorescent]-, and C-banding), a dye is used to stain bands on the chromosomes.

  • High-resolution chromosome analysis uses special culture methods to obtain a high percentage of prophase and prometaphase spreads. The chromosomes are less condensed than in routine metaphase analysis, and the number of identifiable bands is expanded, allowing a more sensitive karyotype analysis.

  • Spectral karyotyping analysis (also called chromosome painting) uses chromosome-specific multicolor fluorescent in situ hybridization (FISH) techniques that improve the visibility of certain defects, including translocations and inversions.

  • Chromosomal microarray analysis (CMA), also called array comparative genomic hybridization (aCGH), is a single-step technique that allows the entire genome to be scanned for chromosome dosage abnormalities, including increases (duplications) or decreases (deletions), which may also be suggestive of an unbalanced translocation. Single nucleotide polymorphism (SNP) microarray analysis has the additional ability to detect regions of homozygosity, which may be seen in cases where parents share common ancestry (consanguinity), and also when there is uniparental disomy Uniparental disomy Certain situations represent aberrant inheritance, often because genes or chromosomes are altered. However, some of these alterations, such as mosaicism, are very common; others, such as polymorphisms... read more (ie, both copies of a chromosome, or part of a chromosome, are inherited from one parent, instead of 1 copy from the mother and 1 copy from the father). It is important to note that CMA does not detect balanced rearrangements (eg, translocations, inversions), which are not associated with deletions or duplications.


Noninvasive prenatal screening (NIPS) methods are currently available. For NIPS, cell-free fetal DNA sequences obtained from a maternal blood sample are used for prenatal screening, primarily for trisomy 21 (Down syndrome Down Syndrome (Trisomy 21) Down syndrome is an anomaly of chromosome 21 that can cause intellectual disability, microcephaly, short stature, and characteristic facies. Diagnosis is suggested by physical anomalies and... read more Down Syndrome (Trisomy 21) ), trisomy 13 Trisomy 13 Trisomy 13 is caused by an extra chromosome 13 and causes abnormal forebrain, midface, and eye development; severe intellectual disability; heart defects; and small birth size. Diagnosis is... read more Trisomy 13 , trisomy 18 Trisomy 18 Trisomy 18 is caused by an extra chromosome 18 and is usually associated with intellectual disability, small birth size, and various congenital anomalies, including severe microcephaly, heart... read more Trisomy 18 , and sex chromosome aneuploidy. It is important to note that the sensitivity and specificity vary for different chromosomal anomalies. The positive predictive value also varies because of the different incidence of each condition. Positive predictive value has been found to be high for trisomy 21 but less for trisomy 18 and trisomy 13. NIPS has been used as a screening test for common microdeletion syndromes (eg, 22q11 deletion); however, the sensitivity and specificity are still relatively low. Therefore, it is recommended that any anomaly detected with NIPS should be confirmed with a diagnostic test.

View Patient Education
NOTE: This is the Professional Version. CONSUMERS: View Consumer Version
quiz link

Test your knowledge

Take a Quiz!