Merck Manual

Please confirm that you are a health care professional

Loading

Chronic Myeloid Leukemia (CML)

(Chronic Granulocytic Leukemia; Chronic Myelocytic Leukemia; Chronic Myelogenous Leukemia)

By

Ashkan Emadi

, MD, PhD, University of Maryland;


Jennie York Law

, MD, University of Maryland

Last full review/revision May 2020| Content last modified May 2020
Click here for Patient Education
NOTE: This is the Professional Version. CONSUMERS: Click here for the Consumer Version
Topic Resources

Chronic myeloid leukemia (CML) occurs when a pluripotent stem cell undergoes malignant transformation and clonal myeloproliferation, leading to a striking overproduction of mature and immature granulocytes. Initially asymptomatic, CML progression is insidious, with a nonspecific “benign” stage (malaise, anorexia, weight loss) eventually giving way to accelerated or blast phases with more ominous signs, such as splenomegaly, pallor, easy bruising and bleeding, fever, lymphadenopathy, and skin changes. Peripheral blood smear, bone marrow aspirate, and demonstration of the Philadelphia chromosome are diagnostic. Treatment is with tyrosine kinase inhibitors (TKI) such as imatinib, dasatinib, nilotinib, bosutinib, and ponatinib, which significantly improve response and prolong survival. Myelosuppressive drugs (eg, hydroxyurea), stem cell transplantation, and interferon alfa are also sometimes used.

(See also Overview of Leukemia.)

The American Cancer Society estimates that in the United States in 2020 there will be about 8,450 new cases of CML and about 1,130 deaths. The average age of a patient with CML is 64 years. The average lifetime risk of CML in the United States among both sexes is about 0.19% (1 in 526).

Pathophysiology

The Philadelphia (Ph) chromosome is present in 90 to 95% of cases of chronic myeloid leukemia. The Ph chromosome is the product of a reciprocal translocation between chromosomes 9 and chromosome 22, t(9;22). During this translocation, a piece of chromosome 9 containing the oncogene ABL is translocated to chromosome 22 and fused to the BCR gene. The chimeric fusion gene BCR-ABL is responsible for production of the oncoprotein bcr-abl tyrosine kinase.

The bcr-abl oncoprotein has uncontrolled tyrosine kinase activity, which deregulates cellular proliferation, decreases adherence of leukemia cells to the bone marrow stroma, and protects leukemic cells from normal programmed cell death (apoptosis).

CML ensues when an abnormal pluripotent hematopoietic progenitor cell initiates excessive production of all myeloid lineage cells, primarily in the bone marrow but also in extramedullary sites (eg, spleen, liver). Although granulocyte production predominates, the neoplastic clone includes red blood cells, megakaryocytes, monocytes, and even some T cells and B cells. Normal stem cells are retained and can emerge after drug suppression of the CML clone.

Untreated, CML undergoes 3 phases:

  • Chronic phase: An initial indolent period that may last 5 to 6 years

  • Accelerated phase: Treatment failure, worsening anemia, progressive thrombocytopenia or thrombocytosis, persistent or worsening splenomegaly, clonal evolution, increasing blood basophils, and increasing marrow or blood blasts (up to 19%)

  • Blast phase: Accumulation of blasts in extramedullary sites (eg, bone, central nervous system, lymph nodes, skin); blasts in blood or marrow increase to ≥ 20%

The blast phase leads to fulminant complications resembling those of acute leukemia, including sepsis and bleeding. Some patients progress directly from the chronic to the blast phase.

Symptoms and Signs

About 85% of patients with CML present in the chronic phase. Patients are often asymptomatic early on, with insidious onset of nonspecific symptoms (eg, fatigue, weakness, anorexia, weight loss, night sweats, a sense of abdominal fullness particularly in left upper quadrant, gouty arthritis, symptoms of leukostasis such as tinnitus, stupor, and urticaria), which may prompt evaluation.

Initially, pallor, bleeding, easy bruising, and lymphadenopathy are unusual, but moderate or occasionally extreme splenomegaly is common (60 to 70% of cases). With disease progression, splenomegaly may increase, and pallor and bleeding occur. Fever, marked lymphadenopathy, and maculopapular skin involvement are ominous developments.

Diagnosis

  • Complete blood count (CBC)

  • Bone marrow examination

  • Cytogenetic studies (Ph chromosome)

Chronic myeloid leukemia is most frequently suspected based on an abnormal CBC obtained incidentally or during evaluation of splenomegaly. The granulocyte count is elevated, usually < 50,000/mcL (≤ 50 × 109/L) in asymptomatic patients and 200,000/mcL (200 × 109/L) to 1,000,000/mcL (1,000 × 109/L) in symptomatic patients. Neutrophilia (a left-shifted white blood cell differential), basophilia, and eosinophilia are common. The platelet count is normal or moderately increased, and in some patients, thrombocytosis is the presenting manifestation. The hemoglobin level is usually > 10 g/dL (> 100 g/L).

Peripheral smear review may help differentiate CML from leukocytosis of other etiology. In CML, the peripheral smear frequently shows immature granulocytes as well as absolute eosinophilia and basophilia. However, in patients with white blood cell counts ≤ 50,000/mcL (≤ 50 × 109/L) and even in some with higher white blood cell counts, immature granulocytes may not be seen.

Bone marrow examination should be done to evaluate the karyotype as well as cellularity and extent of myelofibrosis.

Diagnosis is confirmed by finding the Ph chromosome in samples examined with cytogenetic or molecular studies. The classic Ph cytogenetic abnormality is absent in 5% of patients, but the use of fluorescence in situ hybridization (FISH) or reverse transcription polymerase chain reaction (RT-PCR) can confirm the diagnosis.

During the accelerated phase of CML, anemia and thrombocytopenia usually develop. Basophils may increase, and granulocyte maturation may be defective. The proportion of immature cells may increase. In the bone marrow, myelofibrosis may develop and sideroblasts may be present. Evolution of the neoplastic clone may be associated with development of new abnormal karyotypes, often an extra chromosome 8 or isochromosome 17q [i(17q)].

Further evolution may lead to a blast phase with myeloblasts (60% of patients), lymphoblasts (30%), megakaryoblasts (10%) and, rarely, erythroblasts. In 80% of these patients, additional chromosomal abnormalities occur.

Prognosis

With use of tyrosine kinase inhibitors , survival is now > 90% at 5 years after diagnosis for chronic phase CML. Before tyrosine kinase inhibitors were used, even with treatment, 5 to 10% of patients died within 2 years of diagnosis; 10 to 15% died each year thereafter. Median survival was 4 to 7 years. Most (90%) deaths followed a blast phase or an accelerated phase of the disease. Median survival after blast crisis was about 3 to 6 months or longer if remission was achieved.

Treatment

  • Tyrosine kinase inhibitors

  • Sometimes, allogeneic stem cell transplantation

Treatment of chronic myeloid leukemia depends on the stage of disease. Tyrosine kinase inhibitors (eg, imatinib, nilotinib, dasatinib, bosutinib, ponatinib) are not curative but are extremely effective in the asymptomatic chronic phase and are the initial treatment choice for patients in this phase. Tyrosine kinase inhibitors are also sometimes used in the accelerated or blast phase. Allogeneic hematopoietic stem cell transplant is reserved for patients with accelerated or blast phase CML or those with disease resistant to the available tyrosine kinase inhibitors.

Except when stem cell transplantation is successful, treatment is not proven to be curative. However, tyrosine kinase inhibitors prolong survival. Some patients may be able to discontinue tryrosine kinase inhibitors and remain in remission. The durability of these remissions is not yet known.

Tyrosine kinase inhibitors inhibit the BCR-ABL oncogene, which is responsible for induction of CML. These drugs are dramatically effective in achieving complete hematologic and cytogenetic remissions of Ph chromosome–positive CML (Ph+ CML) and are clearly superior to other drug regimens (eg, interferon with or without cytarabine).

The response to TKI therapy is the most important prognostic factor for patients with CML. Patient's response is measured at baseline and then at 3 months, 6 months, and 1 year. The response can be assessed with either a molecular test (measurement of BCR-ABL protein) or a cytogenetic test (measurement of Ph+ chromosome cells), but both are recommended whenever possible. A major molecular response is defined as blood BCR-ABL < 1/1000th (or less) of the expected value for untreated CML. If, after 12 months, a major molecular response is achieved, the response can be monitored every 3 to 6 months by real time quantitative polymerase chain reaction of BCR-ABL protein; cytogenetic testing is required only in case of failure or if standardized molecular testing is not available.

Rarely, other drugs are used as palliation in CML. These drugs include hydroxyurea, busulfan, and recombinant interferon or pegylated interferon. The main benefit of hydroxyurea is reduction in distressing splenomegaly and adenopathy and control of the tumor burden to reduce the incidence of tumor lysis syndrome and gout. None of these drugs seems to prolong survival, although interferon can produce a clinical remission in about 19 % of patients.

Allogeneic stem cell transplantation, because of its toxicity and because of the efficacy of tyrosine kinase inhibitors, is used selectively. Transplantation is reserved for patients with accelerated- or blast-phase CML resistant to BCR-ABL inhibitors. Transplant can be curative.

Key Points

  • Chronic myeloid leukemia (CML) involves a chromosomal translocation that creates the Philadelphia chromosome, t(9;22) .

  • The peripheral smear (typically showing immature granulocytes, basophilia, and eosinophilia) helps distinguish CML from leukocytosis of other etiologies (eg, leukocytosis due to infection).

  • Tyrosine kinase inhibitors are extremely effective, prolong survival, and may even be curative.

  • Stem cell transplantation can be curative and may help patients who do not respond to tyrosine kinase inhibitors or who progress to accelerated or blast phase.

More Information

The following is an English-language resource that may be useful. Please note that THE MANUAL is not responsible for the content of this resource.

Click here for Patient Education
NOTE: This is the Professional Version. CONSUMERS: Click here for the Consumer Version
Professionals also read

Also of Interest

Videos

View All
Overview of ADP Receptor
Video
Overview of ADP Receptor
ADP receptors are integral proteins embedded in a platelet membrane. When ADP binds, it causes...
Overview of Disseminated Intravascular Coagulation...
Video
Overview of Disseminated Intravascular Coagulation...

SOCIAL MEDIA

TOP