The rifamycins are bactericidal antibiotics Overview of Antibacterial Drugs Antibacterial drugs are derived from bacteria or molds or are synthesized de novo. Technically, “antibiotic” refers only to antimicrobials derived from bacteria or molds but is often (including... read more ; they inhibit bacterial DNA-dependent RNA polymerase, suppressing RNA synthesis. The following drugs are rifamycins:
Rifabutin, Rifampin, and Rifapentine
Rifabutin, rifampin, and rifapentine have similar pharmacokinetics, antimicrobial spectra, and adverse effects.
Pharmacokinetics
Oral absorption is good, producing wide distribution in body tissues and fluids, including cerebrospinal fluid.
Rifampin is concentrated in polymorphonuclear granulocytes and macrophages, facilitating clearance of bacteria from abscesses. It is metabolized in the liver and eliminated in bile and, to a much lesser extent, in urine.
Indications
Rifampin is active against
Most gram-positive and some gram-negative bacteria
Resistance develops rapidly, so rifampin is rarely used alone. Rifampin is used with other antibiotics for
Atypical mycobacterial infection (rifampin is active against many nontuberculous mycobacteria, but rapidly growing mycobacteria Nontuberculous Mycobacterial Infections There are over 170 recognized species of mycobacteria, mostly environmental. Environmental exposure to many of these organisms is common, but most exposures do not cause infection and many infections... read more , such as Mycobacterium fortuitum, M. chelonae, or M. abscessus, are naturally resistant)
Staphylococcal infections Staphylococcal Infections Staphylococci are gram-positive aerobic organisms. Staphylococcus aureus is the most pathogenic; it typically causes skin infections and sometimes pneumonia, endocarditis, and osteomyelitis... read more
, including osteomyelitis, prosthetic valve endocarditis, and infections involving foreign bodies such as a prosthetic joint (with other antistaphylococcal antibiotics)
Legionella Legionella Infections Legionella pneumophila is a gram-negative bacillus that most often causes pneumonia with extrapulmonary features. Diagnosis requires specific growth media, serologic or urine antigen... read more
infections (older data suggest better outcomes for rifampin when used with erythromycin Macrolides Macrolides are antibiotics that are primarily bacteriostatic; by binding to the 50S subunit of the ribosome, they inhibit bacterial protein synthesis. Macrolides are relatively poorly absorbed... read more
; use of rifampin with azithromycin or a fluoroquinolone offers no advantage)
Pneumococcal meningitis Pneumococcal meningitis Streptococcus pneumoniae (pneumococci) are gram-positive, alpha-hemolytic, aerobic, encapsulated diplococci. Pneumococcal infection is a major cause of otitis media, pneumonia, sepsis... read more when organisms are susceptible to rifampin (with vancomycin with or without ceftriaxone or cefotaxime for ceftriaxone- or cefotaxime-resistant organisms [minimum inhibitory concentration > 4 mcg/mL]) or when expected clinical or microbiologic response is delayed
Rifampin can be used alone for prophylaxis of close contacts of patients with meningococcal meningitis Diseases Caused by Meningococci Meningococci (Neisseria meningitidis) are gram-negative diplococci that cause meningitis and meningococcemia. Symptoms, usually severe, include headache, nausea, vomiting, photophobia... read more or Haemophilus influenzae type b meningitis Diseases caused by Haemophilus species The gram-negative bacteria Haemophilus species cause numerous mild and serious infections, including bacteremia, meningitis, pneumonia, sinusitis, otitis media, cellulitis, and epiglottitis... read more .
Rifabutin and rifampin are equally efficacious in regimens for tuberculosis in HIV-positive and HIV-negative patients. However, if patients are receiving antiretroviral therapy (ART), rifabutin is preferred because it is less likely to induce cytochrome P-450 metabolic enzymes that lower serum levels of protease inhibitors and non-nucleoside reverse transcriptase inhibitors.
Rifampin is preferred over rifabutin for Mycobacterium avium complex (MAC) lung disease, unless patients are receiving ART; in such cases, rifabutin may be substituted. However, rifabutin is preferred over rifampin for disseminated MAC infections because of its superior activity in vitro and reduced drug interaction potential.
Rifapentine is used to treat pulmonary and latent tuberculosis.
Contraindications
Rifampin and rifabutin are contraindicated in patients who have had an allergic reaction to them.
Use During Pregnancy and Breastfeeding
Some animal reproduction studies with rifabutin showed adverse effects when drug levels were higher than those typically achieved in humans. No adequate and well-controlled studies have been done in pregnant or breastfeeding women. Safety during breastfeeding is unknown.
Animal reproduction studies with rifampin or rifapentine show some risk (ie, teratogenicity) at drug levels less than or equal to those typically achieved in humans. No adequate and well-controlled studies with either drug have been done in pregnant women.
Because of potential tumorigenicity shown in animal studies, the manufacturer does not recommend use of rifampin during breastfeeding. However, the Centers for Disease Control and Prevention (CDC) does not consider rifampin a contraindication to breastfeeding; a decision to stop breastfeeding or to stop the drug should be made depending on the importance of the drug to the mother.
Adverse Effects
Adverse effects of rifamycins include
Hepatitis (most serious)
Gastrointestinal disturbances
Central nervous system effects
Myelosuppression
Hepatitis occurs much more often when isoniazid or pyrazinamide is used concurrently with rifampin. During the first week of therapy, rifampin may cause a transient rise in unconjugated serum bilirubin, which results from competition between rifampin and bilirubin for excretion and which is not in itself an indication for interrupting treatment.
Central nervous system effects may include headache, drowsiness, ataxia, and confusion. Rash, fever, leukopenia, hemolytic anemia, thrombocytopenia, interstitial nephritis, acute tubular necrosis, renal insufficiency, and interstitial nephritis are generally considered to be hypersensitivity reactions and occur when therapy is intermittent or when treatment is resumed after interruption of a daily dosage regimen; they are reversed when rifampin is stopped.
Rifabutin can cause dose-dependent unilateral or bilateral uveitis.
Less serious adverse effects are common; they include heartburn, nausea, vomiting, and diarrhea. Rifampin, rifabutin, and rifapentine can cause temporary reddish orange discoloration of urine, saliva, sweat, sputum, and tears. Soft contact lenses may be permanently discolored.
Dosing Considerations
If patients have a liver disorder, liver tests should be done before rifampin therapy is started and every 2 to 4 weeks during therapy, or an alternate drug should be used. Dose adjustments are unnecessary for renal insufficiency.
Rifampin interacts with many drugs because it is a potent inducer of hepatic cytochrome P-450 (CYP450) microsomal enzymes. Rifampin accelerates elimination and thereby may decrease the effectiveness of the following drugs: angiotensin-converting enzyme inhibitors, atovaquone, barbiturates, beta-blockers, calcium channel blockers, chloramphenicol, clarithromycin, oral and systemic hormone contraceptives, corticosteroids, cyclosporine, dapsone, digoxin, doxycycline, fluconazole, haloperidol, itraconazole, ketoconazole, the non-nucleoside reverse transcriptase inhibitors delavirdine and nevirapine, opioid analgesics, phenytoin, protease inhibitors, quinidine, sulfonylureas, tacrolimus, theophylline, thyroxine, tocainide, tricyclic antidepressants, voriconazole, warfarin, and zidovudine. To maintain optimum therapeutic effect of these drugs, clinicians may have to adjust the dosage when rifampin is started or stopped.
Conversely, protease inhibitors, as well as other drugs (eg, azoles, the macrolide clarithromycin, non-nucleoside reverse transcriptase inhibitors) inhibit CYP450 enzymes and increase levels of rifamycins and thus potentially increase the frequency of toxic reactions. For example, uveitis occurs more commonly when rifabutin is used with clarithromycin or azoles.
Rifaximin
Rifaximin is a derivative of rifamycin that is poorly absorbed after oral administration; 97% is recovered primarily unchanged in feces.
Rifaximin can be used for empiric treatment of
Traveler’s diarrhea Traveler’s diarrhea Appropriate planning reduces the risks associated with travel, including foreign travel. Prior to travel, patients and their medical providers should review planned itineraries and relevant... read more , which is caused primarily by enterotoxigenic and enteroaggregative Escherichia coli
Rifaximin is not known to be effective for diarrhea due to enteric pathogens other than E. coli. Because rifaximin is not systemically absorbed, it should not be used to treat infectious diarrhea caused by invasive enteric bacterial pathogens (eg, Shigella species, Salmonella species, Campylobacter species). The dose for traveler's diarrhea is 200 mg orally every 8 hours for 3 days in adults and children > 12 years.
Rifaximin may also be used for the treatment of
Portosystemic (hepatic) encephalopathy Portosystemic Encephalopathy Portosystemic encephalopathy is a neuropsychiatric syndrome that can develop in patients with liver disease. It most often results from high gut protein or acute metabolic stress (eg, gastrointestinal... read more : The dosage is 550 mg orally 2 times a day.
Irritable bowel syndrome Irritable Bowel Syndrome (IBS) Irritable bowel syndrome is characterized by recurrent abdominal discomfort or pain with at least two of the following characteristics: relation to defecation, association with a change in frequency... read more (IBS): The dosage is 550 mg orally 3 times a day.
Adverse effects of rifaximin include nausea, vomiting, abdominal pain, and flatulence.
More Information
The following is an English-language resource that may be useful. Please note that THE MANUAL is not responsible for the content of this resource.
Centers for Disease Control and Prevention (CDC): Treatment for TB Disease and Pregnancy
Drugs Mentioned In This Article
Drug Name | Select Trade |
---|---|
rifabutin |
Mycobutin |
rifampin |
Rifadin, Rifadin IV, Rimactane |
rifapentine |
Priftin |
rifaximin |
Xifaxan |
dapsone |
Aczone |
clofazimine |
Lamprene |
erythromycin |
A/T/S, Akne-mycin, E.E.S., Emcin Clear , EMGEL, E-Mycin, ERYC, Erycette, Eryderm , Erygel, Erymax, EryPed, Ery-Tab, Erythra Derm , Erythrocin, Erythrocin Lactobionate, Erythrocin Stearate, Ilosone, Ilotycin, My-E, PCE, PCE Dispertab , Romycin, Staticin, T-Stat |
azithromycin |
Azasite, Zithromax, Zithromax Powder, Zithromax Single-Dose , Zithromax Tri-Pak, Zithromax Z-Pak, Zmax, Zmax Pediatric |
vancomycin |
FIRVANQ, Vancocin, Vancocin Powder, VANCOSOL |
ceftriaxone |
Ceftrisol Plus, Rocephin |
cefotaxime |
Claforan |
isoniazid |
Nydrazid |
pyrazinamide |
No brand name available |
atovaquone |
Mepron |
chloramphenicol |
AK-Chlor, Chloromycetin, Chloroptic, Chloroptic S.O.P., Ocu-Chlor |
clarithromycin |
Biaxin, Biaxin XL |
cyclosporine |
Cequa, Gengraf , Neoral, Restasis, Sandimmune, SangCya, Verkazia |
digoxin |
Digitek , Lanoxicaps, Lanoxin, Lanoxin Pediatric |
doxycycline |
Acticlate, Adoxa, Adoxa Pak, Avidoxy, Doryx, Doxal, Doxy 100, LYMEPAK, Mondoxyne NL, Monodox, Morgidox 1x, Morgidox 2x , Okebo, Oracea, Oraxyl, Periostat, TARGADOX, Vibramycin, Vibra-Tabs |
fluconazole |
Diflucan |
haloperidol |
Haldol, Haldol Decanoate |
itraconazole |
ONMEL, Sporanox, TOLSURA |
ketoconazole |
Extina, Ketodan, Kuric, Nizoral, Nizoral A-D, Xolegel |
delavirdine |
Rescriptor |
nevirapine |
Viramune, Viramune Suspension, Viramune XR |
phenytoin |
Dilantin, Dilantin Infatabs, Dilantin-125, Phenytek |
quinidine |
Quinaglute, Quinora |
tacrolimus |
ASTAGRAF XL, ENVARSUS, HECORIA, Prograf, Protopic |
theophylline |
Elixophyllin, Quibron T, Quibron T/SR, Respbid, Slo-Bid, Slo-Phyllin, Theo X, Theo-24, Theo-Bid Duracap, TheoCap, Theochron, Theo-Dur, Theo-Dur Sprinkle , Theolair, Theolair SR, Theovent LA, T-Phyl, Uni-Dur, Uniphyl |
voriconazole |
VFEND |
warfarin |
Coumadin, Jantoven |
zidovudine |
Retrovir |
rifamycin |
Aemcolo |