Merck Manual

Please confirm that you are a health care professional

honeypot link

Overview of Lipid Metabolism

By

Michael H. Davidson

, MD, FACC, FNLA, University of Chicago Medicine;


Vishnu Priya Pulipati

, MD, The University of Chicago Medicine

Last full review/revision Aug 2021| Content last modified Aug 2021
Click here for Patient Education
Topic Resources

Lipids are fats that are either absorbed from food or synthesized by the liver. Triglycerides (TGs) and cholesterol contribute most to disease, although all lipids are physiologically important.

Cholesterol is a ubiquitous constituent of cell membranes, steroids, bile acids, and signaling molecules.

Triglycerides primarily store energy in adipocytes and muscle cells.

Lipoproteins are hydrophilic, spherical structures that possess surface proteins (apoproteins, or apolipoproteins) that are cofactors and ligands for lipid-processing enzymes (see table Major Apoproteins and Enzymes Important to Lipid Metabolism Major Apoproteins and Enzymes Important to Lipid Metabolism Lipids are fats that are either absorbed from food or synthesized by the liver. Triglycerides (TGs) and cholesterol contribute most to disease, although all lipids are physiologically important... read more ). All lipids are hydrophobic and mostly insoluble in blood, so they require transport within lipoproteins. Lipoproteins are classified by size and density (defined as the ratio of lipid to protein) and are important because high levels of low-density lipoproteins (LDL) and low levels of high-density lipoproteins (HDL) are major risk factors for atherosclerotic heart disease Atherosclerosis Atherosclerosis is characterized by patchy intimal plaques (atheromas) that encroach on the lumen of medium-sized and large arteries; the plaques contain lipids, inflammatory cells, smooth muscle... read more Atherosclerosis .

Table
icon

Physiology of Lipid Metabolism

Pathway defects in lipoprotein synthesis, processing, and clearance can lead to accumulation of atherogenic lipids in plasma and endothelium.

Exogenous (dietary) lipid metabolism

Over 95% of dietary lipids are

  • Triglycerides

The remaining about 5% of dietary lipids are

  • Cholesterol (present in foods as esterified cholesterol)

  • Fat-soluble vitamins

  • Free fatty acids (FFAs)

  • Phospholipids

Dietary TGs are digested in the stomach and duodenum into monoglycerides (MGs) and FFAs by gastric lipase, emulsification due to vigorous stomach peristalsis, and pancreatic lipase. Dietary cholesterol esters are de-esterified into free cholesterol by these same mechanisms.

Monoglycerides, FFAs, and free cholesterol are then solubilized in the intestine by bile acid micelles, which shuttle them to intestinal villi for absorption.

Once absorbed into enterocytes, they are reassembled into TGs and packaged with cholesterol into chylomicrons, the largest lipoproteins.

Chylomicrons transport dietary TGs and cholesterol from within enterocytes through lymphatics into the circulation. In the capillaries of adipose and muscle tissue, apoprotein C-II (apo C-II) on the chylomicron activates endothelial lipoprotein lipase (LPL) to convert 90% of chylomicron triglyceride to fatty acids and glycerol, which are taken up by adipocytes and muscle cells for energy use or storage.

Cholesterol-rich chylomicron remnants then circulate back to the liver, where they are cleared in a process mediated by apoprotein E (apo E).

Endogenous lipid metabolism

Lipoproteins synthesized by the liver transport endogenous triglycerides and cholesterol. Lipoproteins circulate through the blood continuously until the TGs they contain are taken up by peripheral tissues or the lipoproteins themselves are cleared by the liver. Factors that stimulate hepatic lipoprotein synthesis generally lead to elevated plasma cholesterol and TG levels.

Very-low-density lipoproteins (VLDL) contain apoprotein B-100 (apo B), are synthesized in the liver, and transport TGs and cholesterol to peripheral tissues. VLDL is the way the liver exports excess TGs derived from plasma free fatty acids and chylomicron remnants; VLDL synthesis increases with increases in intrahepatic FFAs, such as occur with high-fat diets and when excess adipose tissue releases FFAs directly into the circulation (eg, in obesity Obesity Obesity is excess body weight, defined as a body mass index (BMI) of ≥ 30 kg/m2. Complications include cardiovascular disorders (particularly in people with excess abdominal fat), diabetes mellitus... read more , uncontrolled diabetes mellitus Diabetes Mellitus (DM) Diabetes mellitus is impaired insulin secretion and variable degrees of peripheral insulin resistance leading to hyperglycemia. Early symptoms are related to hyperglycemia and include polydipsia... read more ). Apo C-II on the VLDL surface activates endothelial LPL to break down TGs into FFAs and glycerol, which are taken up by cells.

Intermediate-density lipoproteins (IDL) are the product of LPL processing of VLDL. IDL are cholesterol-rich VLDL remnants that are either cleared by the liver or metabolized by hepatic lipase into LDL, which retains apo B-100.

Low-density lipoproteins (LDL), the products of VLDL and IDL metabolism, are the most cholesterol-rich of all lipoproteins. About 40 to 60% of all LDL are cleared by the liver in a process mediated by apo B and hepatic LDL receptors. The rest are taken up by either hepatic LDL or nonhepatic non-LDL (scavenger) receptors. Hepatic LDL receptors are down-regulated by delivery of cholesterol to the liver by chylomicrons and by increased dietary saturated fat; they can be up-regulated by decreased dietary fat and cholesterol. Nonhepatic scavenger receptors, most notably on macrophages, take up excess LDL not processed by hepatic receptors. Monocytes migrate into the subendothelial space and become macrophages; these macrophages then take up oxidized LDL and form foam cells within atherosclerotic plaques Pathophysiology Atherosclerosis is characterized by patchy intimal plaques (atheromas) that encroach on the lumen of medium-sized and large arteries; the plaques contain lipids, inflammatory cells, smooth muscle... read more Pathophysiology .

The size of LDL particles varies from large and buoyant to small and dense. Small, dense LDL is especially rich in cholesterol esters and is associated with metabolic disturbances such as hypertriglyceridemia and insulin resistance.

High-density lipoproteins (HDL) are initially cholesterol-free lipoproteins that are synthesized in both enterocytes and the liver. HDL metabolism is complex, but one role of HDL is to obtain cholesterol from peripheral tissues and other lipoproteins and transport it to where it is needed most—other cells, other lipoproteins (using cholesteryl ester transfer protein [CETP]), and the liver (for clearance). Its overall effect is anti-atherogenic.

Efflux of free cholesterol from cells is mediated by ATP-binding cassette transporter A1 (ABCA1), which combines with apoprotein A-I (apo A-I) to produce nascent HDL. Free cholesterol in nascent HDL is then esterified by the enzyme lecithin-cholesterol acyl transferase (LCAT), producing mature HDL. Plasma HDL levels may not completely represent reverse cholesterol transport, and the protective effects of higher HDL levels may also be due to anti-oxidant and anti-inflammatory properties.

Lipoprotein (a) [Lp(a)] is an LDL-like particle that contains apoprotein (a), characterized by 5 cysteine-rich regions called kringles. One of these regions is homologous with plasminogen and is thought to competitively inhibit fibrinolysis and thus predispose to thrombus formation. The Lp(a) may also directly promote atherosclerosis Atherosclerosis Atherosclerosis is characterized by patchy intimal plaques (atheromas) that encroach on the lumen of medium-sized and large arteries; the plaques contain lipids, inflammatory cells, smooth muscle... read more Atherosclerosis . The metabolic pathways of Lp(a) production and clearance are not well characterized, but levels increase in patients with chronic kidney disease Chronic Kidney Disease Chronic kidney disease (CKD) is long-standing, progressive deterioration of renal function. Symptoms develop slowly and in advanced stages include anorexia, nausea, vomiting, stomatitis, dysgeusia... read more Chronic Kidney Disease , especially in patients on dialysis.

Click here for Patient Education
NOTE: This is the Professional Version. CONSUMERS: Click here for the Consumer Version
Professionals also read

Test your knowledge

Cushing Syndrome
A 24-year-old woman comes to the office because she has had development of hair on her face, chest, and back as well as irregular menses for the past 8 months. She says she also has had easy bruising with poor wound healing during this time. Cushing syndrome is suspected, but results of urinary free cortisol test are indeterminate. Which of the following studies is most likely to confirm a diagnosis in this patient?  
Download the Manuals App iOS ANDROID
Download the Manuals App iOS ANDROID
Download the Manuals App iOS ANDROID
 

Also of Interest

 
TOP