Merck Manual

Please confirm that you are a health care professional

honeypot link

Drugs to Aid Intubation


Vanessa Moll

, MD, DESA, Emory University School of Medicine, Department of Anesthesiology, Division of Critical Care Medicine

Last full review/revision Apr 2020| Content last modified Apr 2020
Click here for Patient Education

Pulseless and apneic or severely obtunded patients can (and should) be intubated without pharmacologic assistance. Other patients are given sedating and paralytic drugs to minimize discomfort and facilitate intubation (termed rapid sequence intubation).

Pretreatment before intubation

Pretreatment typically includes

  • 100% oxygen

  • Lidocaine

  • Sometimes atropine, a neuromuscular blocker, or both

If time permits, patients should be placed on 100% oxygen for 3 to 5 minutes; this measure may maintain satisfactory oxygenation in previously healthy patients for up to 8 minutes. Noninvasive ventilation (NIV) or high-flow nasal cannula (HFNC) can be used to aid preoxygenation (1). Even in apneic patients, such preoxygenation has been shown to improve arterial oxygen saturation and prolong the period of safe apneic time (2). However, oxygen demand and safe apnea times are very dependent on pulse rate, pulmonary function, red blood cell count, and numerous other metabolic factors.

Laryngoscopy causes a sympathetic-mediated pressor response with an increase in heart rate, blood pressure, and possibly intracranial pressure. To blunt this response, when time permits, some practitioners give lidocaine 1.5 mg/kg IV 1 to 2 minutes before sedation and paralysis.

Children and adolescents often have a vagal response (marked bradycardia) in response to intubation and are given atropine 0.02 mg/kg IV (minimum: 0.1 mg in infants, 0.5 mg in children and adolescents) at the same time.

Some physicians include a small dose of a neuromuscular blocker, such as vecuronium 0.01 mg/kg IV, in patients > 4 years to prevent muscle fasciculations caused by full doses of succinylcholine. Fasciculations may result in muscle pain on awakening and cause transient hyperkalemia; however, the actual benefit of such pretreatment is unclear.

Sedation and analgesia for intubation

Laryngoscopy and intubation are uncomfortable; in conscious patients, a short-acting IV drug with sedative or combined sedative and analgesic properties is mandatory.

Etomidate 0.3 mg/kg, a nonbarbiturate hypnotic, may be the preferred drug.

Fentanyl 5 mcg/kg (2 to 5 mcg/kg in children; note: this dose is higher than the analgesic dose and needs to be reduced if used in combination with a sedative-hypnotic, eg, propofol or etomidate) also works well and causes no cardiovascular depression. Fentanyl is an opioid and thus has analgesic as well as sedative properties. However, at higher doses, chest wall rigidity may occur.

Ketamine 1 to 2 mg/kg is a dissociative anesthetic with cardiostimulatory properties. It is generally safe but may cause hallucinations or bizarre behavior on awakening.

Propofol, a sedative and amnesic, is commonly used in induction at doses of 1.5 to 3 mg/kg IV but can cause cardiovascular depression leading to hypotension.

Thiopental 3 to 4 mg/kg and methohexital 1 to 2 mg/kg are effective but tend to cause hypotension and are used less often.

Drugs to cause paralysis for intubation

Skeletal muscle relaxation with an IV neuromuscular blocker markedly facilitates intubation.

Succinylcholine (1.5 mg/kg IV, 2.0 mg/kg for infants), a depolarizing neuromuscular blocker, has the most rapid onset (30 seconds to 1 minute) and shortest duration (3 to 5 minutes). It should be avoided in patients with burns, muscle crush injuries > 1 to 2 days old, spinal cord injury, neuromuscular disease, renal failure, or possibly penetrating eye injury. About 1/15,000 children (and fewer adults) have a genetic susceptibility to malignant hyperthermia due to succinylcholine. Succinylcholine should always be given with atropine in children because pronounced bradycardia may occur.

Alternative nondepolarizing neuromuscular blockers have longer duration of action (> 30 minutes) but also have slower onset unless used in high doses that prolong paralysis significantly. Drugs include atracurium 0.5 mg/kg, mivacurium 0.15 mg/kg, rocuronium 1.0 mg/kg, and vecuronium 0.1 to 0.2 mg/kg injected over 60 seconds.

Topical anesthesia for intubation

Intubation of an awake patient (typically not done in children) requires anesthesia of the nose and pharynx. A commercial aerosol preparation of benzocaine, tetracaine, butyl aminobenzoate (butamben), and benzalkonium is commonly used. Alternatively, 4% lidocaine can be nebulized and inhaled via face mask.

Drugs to aid intubation references

  • 1. Higgs A, McGrath BA, Goddard C, et al: Guidelines for the management of tracheal intubation in critically ill adults. Br J Anaesth 120:323–352, 2018. doi: 10.1016/j.bja.2017.10.021

  • 2. Mosier JM, Hypes CD, Sakles JC: Understanding preoxygenation and apneic oxygenation during intubation in the critically ill. Intensive Care Med 43(2):226–228, 2017. doi: 10.1007/s00134-016-4426-0

Drugs Mentioned In This Article

Drug Name Select Trade
No US brand name
Click here for Patient Education
NOTE: This is the Professional Version. CONSUMERS: Click here for the Consumer Version
Professionals also read

Test your knowledge

Tracheal Intubation
Prior to beginning tracheal intubation, it is important to first correctly position the patient, prepare the medical equipment, and do which of the following additional actions? 
Download the Manuals App iOS ANDROID
Download the Manuals App iOS ANDROID
Download the Manuals App iOS ANDROID

Also of Interest