Radiation therapy can cure many cancers (see also Overview of Cancer Therapy Overview of Cancer Therapy Curing cancer requires eliminating all cells capable of causing cancer recurrence in a person's lifetime. The major modalities of therapy are Surgery (for local and local-regional disease) Radiation... read more ), particularly those that are localized or that can be completely encompassed within a radiation field. Radiation therapy plus surgery (for head and neck, laryngeal, or uterine cancer) or combined with chemotherapy and surgery (for sarcomas or breast, esophageal, lung, or rectal cancers) improves cure rates and allows for more limited surgery. Radiation therapy may be given before surgery or chemotherapy (neoadjuvant therapy Adjuvant and Neo-adjuvant Therapies Systemic cancer therapy includes chemotherapy (ie, conventional or cytotoxic chemotherapy), hormone therapy, targeted therapy, and immune therapy (see also Overview of Cancer Therapy). The number... read more ) or after surgery or chemotherapy (adjuvant therapy Adjuvant and Neo-adjuvant Therapies Systemic cancer therapy includes chemotherapy (ie, conventional or cytotoxic chemotherapy), hormone therapy, targeted therapy, and immune therapy (see also Overview of Cancer Therapy). The number... read more ).
Radiation therapy can provide palliation even when cure is not possible:
For brain tumors: Prolongs patient functioning and prevents neurologic complications
For cancers that compress the spinal cord: Prevents progression of neurologic deficits
For superior vena cava syndromes: Relieves obstruction
For painful bone lesions: Usually relieves symptoms
Radiation cannot destroy cancer cells without destroying some adjacent normal cells. Consequently, the risk of damage to normal tissue must be weighed against potential gain. The final outcome of a dose of radiation depends on numerous factors, including
Type of radiation (eg, photons, electrons, protons, alpha particles, type of radionuclide)
Dose, schedule, fractionation (ie, how dose is divided over time)
Sensitivity of the cancer to killing by radiation
In general, cancer cells are selectively damaged because of their high metabolic and proliferative rates. Normal tissue repairs itself more efficiently.
Important considerations in the use of radiation therapy include the following:
Dose and schedule
Fractionation
Ability to accurately target the cancer
Target volume
Configuration of radiation beams
Dose distribution
Treatment is tailored to take advantage of the cellular kinetics of the cancer to maximize damage to the cancer and minimize damage to normal tissues.
Radiation therapy sessions begin with the precise positioning of the patient. Foam casts or plastic masks are often constructed to ensure exact repositioning for serial treatments. Laser-guided sensors are used. Typical courses consist of large daily doses given over several weeks for palliative treatment or smaller doses given once a day 5 days/week for 6 to 8 weeks for curative treatment.
Types of Radiation Therapy
There are several different types of radiation therapy, including
External beam radiation
Stereotactic radiation therapy
Conformal radiation therapy
Brachytherapy
Systemic radionuclides
External beam radiation
External beam radiation therapy can be done with
Photons (gamma radiation)
Electrons
Protons
Gamma radiation using a linear accelerator is the most common type of radiation therapy. The radiation dose to adjacent normal tissue can be limited by conformal technology, which reduces scatter at the field margins.
Electron beam radiation therapy has little tissue penetration and is best for skin or superficial cancers. Different energies of electrons are used based on the desired depth of penetration and type of tumor.
Proton therapy has advantages over gamma radiation therapy in that it deposits energy at a depth from the surface, whereas gamma radiation damages all tissues along the path of the beam. Proton beam therapy also can provide sharp margins that may result in less injury to immediately adjacent tissue and is thus particularly useful for tumors of the eye, the base of the brain, and the spine.
Stereotactic radiation therapy
Stereotactic radiation therapy uses multiple, precisely focused beams with precise stereotactic localization of a tumor to deliver a single high dose or multiple fractionated doses to a small intracranial or other target. The beams are delivered from many different angles that all meet at the tumor, thus passing through many different areas of healthy tissue on the way to the tumor; this means the tumor receives a much higher dose of radiation than any of the surrounding healthy tissue. Stereotactic therapy is frequently used to treat metastases to the central nervous system. Advantages include complete tumor killing where conventional surgery would not be possible and few adverse effects. Disadvantages include limitations involving the size of the area that can be treated and the potential danger to adjacent tissues because of the high dose of radiation. In addition, stereotactic radiation therapy cannot be used in all areas of the body. Patients must be immobilized and the target area kept completely still.
Conformal radiation therapy
In conformal radiation therapy, imaging technology allows the radiation beam to be shaped to conform to the dimensions of the tumor, allowing more precise targeting.
Brachytherapy
Brachytherapy involves placement of radioactive seeds into the tumor bed itself (eg, in the prostate or cervix). Typically, placement is guided by CT or ultrasonography. Brachytherapy achieves higher effective radiation doses over a longer period than could be accomplished by fractionated, external beam radiation therapy.
Systemic radionuclides
Systemic radionuclides can direct radiation to cancer in organs that have specific receptors for uptake of the isotope (ie, radioactive iodine for thyroid cancer) or when the radionuclide is attached to a monoclonal antibody (eg, iodine-131 plus tositumomab for non-Hodgkin lymphoma). Isotopes can also palliate bone metastases (ie, radiostrontium or radium for prostate cancer).
Other agents or strategies, such as neoadjuvant chemotherapy, can sensitize tumor tissue to radiation and increase efficacy.
Adverse Effects of Radiation Therapy
Radiation can damage any intervening normal tissue.
Acute adverse effects depend on the area receiving radiation and may include
Lethargy
Fatigue
Mucositis
Dermatologic manifestations (erythema, pruritus, desquamation)
Esophagitis
Pneumonitis
Hepatitis
Gastrointestinal symptoms (nausea, vomiting, diarrhea, tenesmus)
Genitourinary symptoms (frequency, urgency, dysuria)
Bone marrow suppression
Late complications
Late complications of radiation therapy include cataracts, keratitis, and retina damage if the eye is in the treatment field. Additional late complications include hypopituitarism, xerostomia, hypothyroidism, pneumonitis, pericarditis, esophageal stricture, hepatitis, ulcers, gastritis, nephritis, sterility, muscle contractures, and arteriosclerotic heart disease, depending upon the area treated.
Radiation that reaches normal tissue can lead to poor healing of the tissues if further procedures or surgery is necessary. For example, radiation to the head and neck impairs recovery from dental procedures (eg, restoration, extraction) and thus should be given only after necessary dental work has been done.
Radiation therapy can increase the risk of developing other cancers, particularly leukemias, sarcomas, and carcinomas of the thyroid or breast. Peak incidence occurs 5 to 20 years after exposure and depends on the patient's age at the time of treatment. For example, chest radiation therapy for Hodgkin lymphoma in adolescent girls leads to a higher risk of breast cancer than does the same treatment in adult women.
Drugs Mentioned In This Article
Drug Name | Select Trade |
---|---|
tositumomab |
Bexxar |