Merck Manual

Please confirm that you are a health care professional

Loading

Overview of Allergic and Atopic Disorders

By

Peter J. Delves

, PhD, University College London, London, UK

Last full review/revision Oct 2020| Content last modified Oct 2020
Click here for Patient Education
Topic Resources

Allergic (including atopic) and other hypersensitivity disorders are inappropriate or exaggerated immune reactions to foreign antigens. Inappropriate immune reactions include those that are misdirected against intrinsic body components, leading to autoimmune disorders.

Classification of Hypersensitivity Reactions

Hypersensitivity reactions are divided into 4 types by the Gell and Coombs classification. Hypersensitivity disorders often involve more than 1 type.

Type I

Type I reactions (immediate hypersensitivity) are IgE-mediated. Antigen binds to IgE that is bound to tissue mast cells and blood basophils, triggering release of preformed mediators (eg, histamine, proteases, chemotactic factors) and synthesis of other mediators (eg, prostaglandins, leukotrienes, platelet-activating factor, cytokines). These mediators cause vasodilation, increased capillary permeability, mucus hypersecretion, smooth muscle spasm, and tissue infiltration with eosinophils, type 2 helper T (TH2) cells, and other inflammatory cells.

Type I reactions develop < 1 hour after exposure to antigen.

Type I hypersensitivity reactions underlie all atopic disorders (eg, atopic dermatitis, allergic asthma, rhinitis, conjunctivitis) and many allergic disorders (eg, anaphylaxis, some cases of angioedema, urticaria, latex and some food allergies). The terms atopy and allergy are often used interchangeably but are different:

  • Atopy is an exaggerated IgE-mediated immune response; all atopic disorders are type I hypersensitivity disorders.

  • Allergy is any exaggerated immune response to a foreign antigen regardless of mechanism.

Thus, all atopic disorders are considered allergic, but many allergic disorders (eg, hypersensitivity pneumonitis) are not atopic. Allergic disorders are the most common disorders among people.

Atopic disorders most commonly affect the nose, eyes, skin, and lungs. These disorders include conjunctivitis, extrinsic atopic dermatitis (the most common type of eczema), immune-mediated urticaria, immune-mediated angioedema, acute latex allergy, some allergic lung disorders (eg, allergic asthma, IgE-mediated components of allergic bronchopulmonary aspergillosis), allergic rhinitis, and allergic reactions to venomous stings.

Type II

Type II reactions (antibody-dependent cytotoxic hypersensitivity) result when antibody binds to cell surface antigens or to a molecule coupled to a cell surface. The antigen-antibody complex activates cells that participate in antibody-dependent cell-mediated cytotoxicity (eg, natural killer cells, eosinophils, macrophages), complement, or both. The result is cell and tissue damage.

Disorders involving type II reactions include hyperacute graft rejection of an organ transplant, Coombs-positive hemolytic anemias, Hashimoto thyroiditis, and anti–glomerular basement membrane disease (eg, Goodpasture syndrome).

Type III

Type III reactions (immune complex disease) cause inflammation in response to circulating antigen-antibody immune complexes deposited in vessels or tissue. These complexes can activate the complement system or bind to and activate certain immune cells, resulting in release of inflammatory mediators.

Consequences of immune complex formation depend in part on the relative proportions of antigen and antibody in the immune complex. Early, there is excess antigen with small antigen-antibody complexes, which do not activate complement. Later, when antigen and antibody are more balanced, immune complexes are larger and tend to be deposited in various tissues (eg, glomeruli, blood vessels), causing systemic reactions. The isotype of induced antibodies changes, and glycosylation, size, and charge of the complex’s components contribute to the clinical response.

Type III reactions develop 4 to 10 days after exposure to antigen and, if exposure to the antigen continues, can become chronic.

Type IV

Type IV reactions (delayed hypersensitivity) are T-cell–mediated.

T cells, sensitized after contact with a specific antigen, are activated by continued exposure or reexposure to the antigen; they damage tissue by direct toxic effects or through release of cytokines, which activate eosinophils, monocytes and macrophages, neutrophils, or natural killer cells.

Disorders involving type IV reactions include contact dermatitis (eg, poison ivy), subacute and chronic hypersensitivity pneumonitis, acute and chronic allograft rejection, the immune response to tuberculosis, and many forms of drug hypersensitivity.

Latex Sensitivity

Latex sensitivity is an exaggerated immune response to water-soluble proteins in latex products (eg, rubber gloves, dental dams, condoms, tubing for respiratory equipment, catheters, enema tips with inflatable latex cuffs).

Beginning in the late 1980s, incidence increased among health care workers when emphasis on universal precautions resulted in routine use of latex gloves.

Reactions to latex may be

  • Acute (IgE-mediated)

  • Delayed (cell-mediated)

Acute reactions cause urticaria and anaphylaxis; delayed reactions cause dermatitis.

After health care workers wear latex gloves, the skin often becomes irritated and crusted, but this reaction is usually chemical irritation, not latex allergy.

Diagnosis of latex sensitivity is based primarily on history. Skin testing and assays for detecting IgE antilatex antibodies are available.

Treatment is avoidance of latex. Health care institutions should have latex-free gloves and equipment available.

Etiology

Complex genetic, environmental, and site-specific factors contribute to development of allergies.

Genetic factors may be involved, as suggested by familial inheritance of disease, association between atopy and specific human leukocyte antigen (HLA) loci, and polymorphisms of several genes, including those for the high-affinity IgE receptor beta-chain, IL-4 receptor alpha-chain, interleukin (IL)-4, IL-13, CD14, dipeptidyl-peptidase 10 (DPP10), and a disintegrin and metalloprotease domain 33 (ADAM33).

Environmental factors interact with genetic factors to maintain type 2 helper T (TH2) cell–directed immune responses. TH2 cells activate eosinophils, promote IgE production, and are proallergic. Early childhood exposure to bacterial and viral infections and endotoxins (eg, lipopolysaccharide) may normally shift native TH2-cell responses to type 1 helper T (TH1)–cell responses, which suppress TH2 cells and therefore discourage allergic responses. Regulatory T (Treg) cells (eg, CD4+CD25+Foxp3+), which are capable of suppressing TH2-cell responses, and IL-12–secreting dendritic cells, which drive TH1-cell responses, are perhaps also involved. But trends in developed countries toward smaller families with fewer children, cleaner indoor environments, and early use of antibiotics may limit children's exposure to the infectious agents that drive a predominantly TH1-cell response; such trends may explain the increased prevalence of some allergic disorders.

Other factors thought to contribute to allergy development include chronic allergen exposure and sensitization, diet, and environmental pollutants.

Site-specific factors include adhesion molecules in bronchial epithelium and skin and molecules in the gastrointestinal (GI) tract that direct TH2 cells to target tissues. The composition of the GI tract, respiratory tract, and skin microbiota appears to strongly influence the development of allergy. These microbiota may represent new targets for allergy therapy.

Allergens

By definition, an allergen induces type I IgE-mediated or type IV T-cell–mediated immune responses. Allergic triggers are almost always low molecular weight proteins; many of them can become attached to airborne particles.

Allergens that most commonly cause acute and chronic allergic reactions include

  • House dust mite feces

  • Animal dander

  • Pollens (tree, grass, weed)

  • Molds

  • Insect saliva and venom (transmitted by bites and stings)

  • Latex

  • Household chemicals (eg, hydroxyisohexyl 3-cyclohexene carboxaldehyde, cinnamal, eugenol)

Pathophysiology

When allergen binds to IgE-sensitized mast cells and basophils, histamine is released from their intracellular granules. Mast cells are widely distributed but are most concentrated in skin, lungs, and gastrointestinal (GI) mucosa; histamine facilitates inflammation and is the primary mediator of clinical atopy. Physical disruption of tissue and various substances (eg, tissue irritants, opiates, surface-active agents, complement components C3a and C5a) can trigger histamine release directly, independent of IgE.

Histamine causes the following:

  • Local vasodilation (causing erythema)

  • Increased capillary permeability and edema (producing a wheal)

  • Vasodilation of surrounding arterioles mediated by neuronal reflex mechanisms (causing flare—the redness around a wheal)

  • Stimulation of sensory nerves (causing itching)

  • Smooth muscle contraction in the airways (bronchoconstriction) and in the GI tract (increasing GI motility)

  • Increased nasal, salivary, and bronchial gland secretions

When released systemically, histamine is a potent arteriolar dilator and can cause extensive peripheral pooling of blood and hypotension; cerebral vasodilation may be a factor in vascular headache. Histamine increases capillary permeability; the resulting loss of plasma and plasma proteins from the vascular space can worsen circulatory shock. This loss triggers a compensatory catecholamine surge from adrenal chromaffin cells.

Symptoms and Signs

Common symptoms of allergic disorders include

  • Rhinorrhea, sneezing, and nasal congestion (upper respiratory tract)

  • Wheezing and dyspnea (lower respiratory tract)

  • Itching (eyes, nose, skin)

Signs may include nasal turbinate edema, sinus pain during palpation, wheezing, conjunctival hyperemia and edema, urticaria, angioedema, dermatitis, and skin lichenification.

Stridor, wheezing, and hypotension are life-threatening signs of anaphylaxis.

Diagnosis

  • Clinical evaluation

  • Sometimes complete blood count (to check for eosinophilia) and occasionally serum IgE levels (nonspecific tests)

  • Often skin testing and allergen-specific serum IgE testing (specific tests)

  • Rarely provocative testing

A thorough history is generally more reliable than testing or screening. History should include

  • Questions about frequency and duration of attacks and changes over time

  • Triggering factors if identifiable

  • Relation to seasonal or situational settings (eg, predictably occurring during pollen seasons; after exposure to animals, hay, or dust; during exercise; or in particular places)

  • Family history of similar symptoms or of atopic disorders

  • Responses to attempted treatments

Age at onset may be important in asthma because childhood asthma is likely to be atopic and asthma beginning after age 30 is not.

Health care workers may be unaware that exposure to latex products could be causing their allergic reaction.

Nonspecific tests

Certain tests can suggest but not confirm an allergic origin of symptoms.

Complete blood count (CBC) may be done to detect eosinophilia if patients are not taking corticosteroids, which reduce the eosinophil count. However, CBC is of limited value because although eosinophils may be increased in atopy or other conditions (eg, drug hypersensitivity, cancer, inflammatory bowel disease, parasitic infection), a normal eosinophil count does not exclude allergy. Total white blood cell count is usually normal. Anemia and thrombocytosis are not typical of allergic responses and should prompt consideration of a systemic inflammatory disorder.

Conjunctival or nasal secretions or sputum can be examined for leukocytes; finding any eosinophils suggests that TH2-mediated inflammation is likely.

Serum IgE levels are elevated in atopic disorders but are of little help in diagnosis because they may also be elevated in parasitic infections, infectious mononucleosis, some autoimmune disorders, drug reactions, immunodeficiency disorders (hyper-IgE syndrome and Wiskott-Aldrich syndrome), and in some forms of multiple myeloma. IgE levels are probably most helpful for following response to therapy in allergic bronchopulmonary aspergillosis.

Specific tests

Skin testing uses standardized concentrations of antigen introduced directly into skin and is indicated when a detailed history and physical examination do not identify the cause and triggers for persistent or severe symptoms. Skin testing has higher positive predictive values for diagnosing allergic rhinitis and conjunctivitis than for diagnosing allergic asthma or food allergy; negative predictive value for food allergy is high.

The most commonly used antigens are pollens (tree, grass, weed), molds, house dust mite feces, animal danders and sera, insect venom, foods, and beta-lactam antibiotics. Choice of antigens to include is based on patient history and geographic prevalence.

Two skin test techniques can be used:

  • Percutaneous (prick)

  • Intradermal

The prick test can detect most common allergies; it is usually done first. The intradermal test is more sensitive but less specific; it can be used to evaluate sensitivity to allergens when prick test results are negative or equivocal.

For the prick test, a drop of antigen extract is placed on the skin, which is then tented up and pricked or punctured through the extract with the tip of a 27-gauge needle held at a 20° angle or with a commercially available prick device.

If no allergen is identified in the prick test, an intradermal test is done.

For the intradermal test, just enough extract to produce a 1- or 2-mm bleb (typically 0.02 mL) is injected intradermally with a 0.5- or 1-mL syringe and a 27-gauge short-bevel needle.

Prick and intradermal skin testing should include the diluent alone as a negative control and histamine (10 mg/mL for prick tests, 0.01 mL of a 1:1000 solution for intradermal tests) as a positive control. For patients who have had a recent (< 1 year) generalized reaction to the test antigen, testing begins with the standard reagent diluted 100-fold, then 10-fold, and then the standard concentration.

A test is considered positive if a wheal and flare reaction occurs and wheal diameter is 3 to 5 mm greater than that of the negative control after 15 to 20 minutes.

False positives occur in dermatographism (a wheal and flare reaction provoked by stroking or scraping the skin). False negatives occur when allergen extracts have been stored incorrectly or are outdated.

Certain drugs can also interfere with results and should be stopped a few days to a week before testing. These drugs include over the counter (OTC) and prescription antihistamines, tricyclic antidepressants, and monoamine oxidase inhibitors. Some clinicians suggest that testing should be avoided in patients taking beta-blockers because these patients are more likely to have risk factors for severe reactions. These risk factors tend to predict limited cardiopulmonary reserve and include coronary artery disease, arrhythmias, and older age. Also, beta-blockers can interfere with treatment of severe reactions by blocking response to beta-adrenergic agonists such as epinephrine.

Allergen-specific serum IgE tests use an enzyme-labeled anti-IgE antibody to detect binding of serum IgE to a known allergen. These tests are done when skin testing might be ineffective or risky—for example, when drugs that interfere with test results cannot be temporarily stopped before testing or when a skin disorder such as eczema or psoriasis would make skin testing difficult. For allergen-specific serum IgE tests, the allergen is immobilized on a synthetic surface. After incubation with patient serum and enzyme-labeled anti-IgE antibody, a substrate for the enzyme is added; the substrate provides colorimetric, fluorescent, or chemiluminescent detection of binding. Allergen-specific IgE tests have replaced radioallergosorbent testing (RAST), which used 125-I-labeled anti-IgE antibody. Although the allergen-specific serum IgE tests are not radioactive, they are still sometimes referred to as RAST.

Provocative testing includes an oral challenge, which involves direct exposure of the mucosae to allergen; it is indicated for patients who must document their reaction (eg, for occupational or disability claims) and sometimes for diagnosis of food allergy. Other types of provocative testing include asking patients to exercise to diagnose exercise-induced asthma and placing an ice cube on the skin for 4 minutes to diagnose cold-induced urticaria.

Ophthalmic testing has no advantage over skin testing and is rarely used.

Nasal and bronchial challenge are primarily research tools, but bronchial challenge is sometimes used when the clinical significance of a positive skin test is unclear or when no antigen extracts are available (eg, for occupation-related asthma).

Treatment

  • Emergency treatment

  • Removal or avoidance of allergic triggers

  • H1 blockers

  • Mast cell stabilizers

  • Anti-inflammatory corticosteroids and leukotriene inhibitors

  • Immunotherapy (desensitization)

Emergency treatment

Severe allergic reactions (eg, anaphylaxis) require prompt emergency treatment.

If the airways are affected (eg, in angioedema), securing an airway is the highest priority. Treatment may include epinephrine and/or endotracheal intubation.

Patients who have severe allergic reactions should be advised to always carry a prefilled, self-injecting syringe of epinephrine and oral antihistamines and, if a severe reaction occurs, to use these treatments as quickly as possible and then go to the emergency department. There, patients can be closely monitored and treatment can be repeated or adjusted as needed.

Environmental control

Removal or avoidance of allergic triggers is the primary treatment and preventive strategy for allergy.

H1 blockers

Antihistamines block receptors; they do not affect histamine production or metabolism.

H1 blockers are a mainstay of treatment for allergic disorders. H2 blockers are used primarily for gastric acid suppression and have limited usefulness for allergic reactions; they may be indicated as adjunctive therapy for certain atopic disorders, especially chronic urticaria.

Oral H1 blockers relieve symptoms in various atopic and allergic disorders (eg, seasonal hay fever, allergic rhinitis, conjunctivitis, urticaria, other dermatoses, minor reactions to blood transfusion incompatibilities); they are less effective for allergic bronchoconstriction and systemic vasodilation. Onset of action is usually 15 to 30 minutes, with peak effects in 1 hour; duration of action is usually 3 to 6 hours.

Products that contain an oral H1 blocker and a sympathomimetic (eg, pseudoephedrine) are widely available over-the-counter for use in adults and children ≥ 12 years. These products are particularly useful when both an antihistamine and a nasal decongestant are needed; however, they are sometimes contraindicated (eg, if patients are taking a monoamine oxidase inhibitor [MAOI]).

Oral H1 blockers are classified as

  • Sedating

  • Nonsedating (better thought of as less sedating)

Sedating antihistamines are widely available without prescription. All have significant sedative and anticholinergic properties; they pose particular problems for older patients and for patients with glaucoma, benign prostatic hyperplasia, constipation, orthostatic hypotension, delirium, or dementia.

Nonsedating (nonanticholinergic) antihistamines are preferred except when sedative effects may be therapeutic (eg, for nighttime relief of allergic symptoms, for short-term treatment of insomnia in adults or nausea in younger patients).

Antihistamine solutions may be

  • Intranasal (azelastine or olopatadine to treat rhinitis)

  • Ocular (eg, azelastine, emedastine, ketotifen, levocabastine, olopatadine, or pemirolast [not available in the US] to treat conjunctivitis)

Topical diphenhydramine is available but should not be used; its efficacy is unproved, drug sensitization (ie, allergy) may occur, and anticholinergic toxicity can develop in young children who are simultaneously taking oral H1 blockers.

Table
icon

Oral H1 Blockers

Drug

Usual Adult Dosage

Usual Pediatric Dosage

Available Preparations

Sedating*

Brompheniramine

4 mg every 4–6 hours

or

8 mg every 8–12 hours

< 2 years: Contraindicated

2–6 years: 0.125 mg/kg every 6 hours (maximum dose 6–8 mg/day)

6–11 years: 2–4 mg every 6–8 hours (maximum dose 12–16 mg/day)

12 years: Adult dose

4-, 8-, and 12-mg tablets

2 mg/5 mL elixir

8- and 12-mg tablets (sustained-release)

Chlorpheniramine

2–4 mg every 4–6 hours

< 2 years: Contraindicated

2–6 years: Not recommended

6–11 years: 2 mg every 4–6 hours (maximum dose 12 mg/day)

12 years: Adult dose

2-mg chewable tablets

4-, 8-, and 12-mg tablets

2 mg/5 mL syrup

8- and 12-mg tablets or capsules (timed-release)

Clemastine

1.34 mg (1.0 mg of base) twice a day or 2.68 mg 3 times a day

< 1 year: Contraindicated

1–3 years: 0.33–0.67 mg every 12 hours

3–5 years: 0.67 mg every 12 hours

6–11 years: 0.67–1.34 mg every 12 hours

12 years: Adult dose

1.34- and 2.68-mg tablets

0.67 mg/5 mL syrup

Cyproheptadine

4 mg 3 or 4 times a day (maximum 0.5 mg/kg/day)

< 2 years: Contraindicated

2–6 years: 2 mg twice a day or 3 times a day (maximum 12 mg/day)

7–14 years: 4 mg twice a day or 3 times a day (maximum 16 mg/day)

4-mg tablets†

2 mg/5 mL syrup

Dexchlorpheniramine

2 mg every 4–6 hours

< 2 years: Contraindicated

2–5 years: 0.5 mg every 4–6 hours (maximum dose 3 mg/day)

6–11 years: 1 mg every 4–6 hours (maximum dose 6 mg/day)

12 years: Adult dose

2-mg tablets

2 mg/5 mL syrup

4- and 6-mg tablets (extended-release)

Diphenhydramine

25–50 mg every 4–6 hours

< 2 years: Contraindicated

2–11 years: 1.25 mg/kg every 6 hours (maximum dose 300 mg/day)

12 years: Adult dose

25- and 50-mg capsules or tablets

12.5 mg/mL syrup

12.5 mg/5 mL elixir

Hydroxyzine

25–50 mg 3 or 4 times a day

< 2 years: Not recommended

2–11 years: 0.7 mg/kg 3 times a day

12 years: Adult dose

25-, 50-, and 100-mg capsules

10-, 25-, 50-, and 100-mg tablets

10 mg/5 mL syrup

25 mg/5 mL oral suspension

Promethazine

12.5–25 mg twice a day

< 2 years: Contraindicated

2 years: 6.25–12.5 mg twice a day or 3 times a day

12.5-, 25-, and 50-mg tablets†

6.25 mg/5 mL and 25 mg/5 mL syrup

Nonsedating

Acrivastine/pseudoephedrine

8/60 mg twice a day or 3 times a day

< 12 years: Not recommended

12 years: Adult dose

8-mg acrivastine plus 60-mg pseudoephedrine capsules

Cetirizine

5–10 mg once a day

6–11 months: 2.5 mg once a day

12–23 months: 2.5 mg twice a day

2–5 years: 5 mg once a day

6 years: Adult dose

5- and 10-mg tablets

1 mg/mL syrup

Desloratadine

5 mg once a day

6–11 months: 1 mg/day

1–5 years: 1.25 mg/day

6–11 years: 2.5 mg once a day

12 years: Adult dose

5-mg tablets

0.5 mg/mL syrup

Fexofenadine

60 mg twice a day or 180 mg once a day

6–23 months: 15 mg twice a day

2–11 years: 30 mg twice a day

12 years: Adult dose

30-, 60-, and 180-mg tablets

6 mg/mL oral suspension

Levocetirizine

5 mg once a day

< 6 years: Contraindicated

6–11 years: 2.5 mg once/day

12 years: Adult dose

5-mg tablets

0.5 mg/mL oral suspension

Loratadine

10 mg once a day

2–5 years: 5 mg once a day

6 years: Adult dose

10-mg tablets

1 mg/mL syrup

Mizolastine

10 mg once a day

< 12 years: Not recommended

12 years: Adult dose

10-mg tablets

* All sedating antihistamines have strong anticholinergic properties. Generally, they should not be used in the elderly or in patients with glaucoma, benign prostatic hyperplasia, constipation, delirium, dementia, or orthostatic hypotension. These drugs commonly cause dry mouth, blurred vision, urinary retention, constipation, and orthostatic hypotension.

† Dosing frequency in children should not be increased.

Mast cell stabilizers

Mast cell stabilizers block the release of mediators from mast cells.

Mast cell stabilizers are used when other drugs (eg, antihistamines, topical corticosteroids) are ineffective or not well-tolerated.

These drugs may be given

  • Orally (cromolyn)

  • Intranasally (eg, azelastine, cromolyn)

  • Ocularly (eg, azelastine, cromolyn, lodoxamide, ketotifen, nedocromil, olopatadine, pemirolast)

Several ocular and nasal drugs (eg, azelastine, ketotifen, olopatadine, pemirolast) are dual-acting mast cell stabilizers/antihistamines.

Anti-inflammatory drugs

Corticosteroids can be given intranasally (see tables Inhaled Nasal Corticosteroids and Inhaled Mast Cell Stabilizers) or orally.

Oral corticosteroids are indicated for the following:

Ocular corticosteroids are used only when an ophthalmologist is involved because infection is a risk.

Nonsteroidal anti-inflammatory drugs (NSAIDs) are typically not useful, with the exception of topical forms used to relieve conjunctival injection and itching due to allergic conjunctivitis.

Table
icon

Inhaled Nasal Corticosteroids

Drug

Dose per Spray

Initial Dose (Sprays per Nostril)

Beclomethasone

42 mcg

6–12 years: 1 spray twice a day

> 12 years: 1 spray twice a day to 4 times a day

Budesonide

32 mcg

6 years: 1 spray once a day

Flunisolide

29 mcg

6–14 years: 1 spray 3 times a day or 2 sprays twice a day

Adults: 2 sprays twice a day

Fluticasone

50 mcg

4–12 years: 1 spray once a day

> 12 years: 2 sprays once a day

Mometasone

50 mcg

2–11 years: 1 spray once a day

12 years: 2 sprays once a day

Triamcinolone

55 mcg

> 6–12 years: 1 spray once a day

> 12 years: 2 sprays once a day

Table
icon

Inhaled Nasal Mast Cell Stabilizers

Drug

Dose per Spray

Initial Dose (Sprays per Nostril)

Azelastine

137 mcg

5–11 years: 1 spray twice a day

> 12 years: 1–2 sprays twice a day

Cromolyn

5.2 mg

6 years: 1 spray 3 or 4 times a day

Olopatadine

665 mcg

6–11 years: 1 spray twice a day

> 12 years: 2 sprays twice a day

Other drugs

Leukotriene modifiers are indicated for treatment of the following:

  • Mild persistent asthma

  • Seasonal allergic rhinitis

Anti-IgE antibody (omalizumab) is indicated for the following:

  • Moderately persistent or severe asthma refractory to standard treatment

  • Chronic idiopathic urticaria refractory to antihistamine therapy

Immunotherapy

Exposure to allergen in gradually increasing doses (hyposensitization or desensitization) via injection or orally, or in high doses sublingually can induce tolerance and is indicated when allergen exposure cannot be avoided and drug treatment is inadequate.

Mechanism is unknown but may involve induction of the following:

  • IgG antibodies, which compete with IgE for allergen or block IgE from binding with mast cell IgE receptors

  • Interferon-gamma, IL-12, and cytokines secreted by TH1 cells

  • Regulatory T cells

For full effect, injections are initially given once or twice a week. Dose typically starts at 0.1 to 1.0 biologically active units (BAU), depending on initial sensitivity, and is increased weekly or every 2 weeks by 2 times with each injection until the maximum tolerated dose (the dose that begins to elicit moderate adverse effects) is established; patients should be observed for about 30 minutes postinjection during dose escalation because anaphylaxis may occur after injection. Subsequently, injections of the maximum tolerated dose should be given every 2 to 4 weeks year-round; year-round treatment is better than preseasonal or coseasonal treatment, even for seasonal allergies.

Allergens used are those that typically cannot be avoided: pollens, house dust mite feces, molds, and venom of stinging insects. Insect venoms are standardized by weight; a typical starting dose is 0.01 mcg, and usual maintenance dose is 100 to 200 mcg. Animal dander desensitization is ordinarily limited to patients who cannot avoid exposure (eg, veterinarians, laboratory workers), but there is little evidence that it is useful. Desensitization for peanut is available, and desensitization for other food allergens is under study. Desensitization for penicillin and certain other drugs and for foreign (xenogeneic) serum can be done.

Adverse effects are most commonly related to overdose, occasionally via inadvertent IM or IV injection of a dose that is too high, and range from mild cough or sneezing to generalized urticaria, severe asthma, anaphylactic shock, and, rarely, death. Adverse effects can be prevented by the following:

  • Increasing the dose in small increments

  • Repeating or decreasing the dose if local reaction to the previous injection is large ( 2.5 cm in diameter)

  • Reducing the dose when a fresh extract is used

Reducing the dose of pollen extract during pollen season is recommended. Epinephrine, oxygen, and resuscitation equipment should be immediately available for prompt treatment of anaphylaxis.

Sublingual immunotherapy with grass pollen, ragweed, cat dander, or house dust mite allergen extracts can be used for allergic rhinitis when it is induced by these allergens. The first dose is given in a health care setting; patients should be observed for 30 minutes after administration because anaphylaxis may occur. If the first dose is tolerated, patients take subsequent doses daily at home. In adults, the initial dose is not increased, but in children and adolescents aged 10 to17 years, the dose is increased over the first 3 days. In patients with grass pollen or ragweed allergy, treatment is initiated 4 months before the onset of each grass pollen or ragweed season and maintained throughout the season.

Oral immunotherapy for peanut allergy uses defatted peanut flour. Initial dose escalation is with 5 incremental doses from 0.5 mg to 6 mg over one day undertaken in a healthcare setting. This initial regimen is followed by up-dosing with a daily dose starting at 3 mg and increasing every 2 weeks over 22 weeks before reaching the maintenance dose of 300 mg once daily. During up-dosing, the day of each increase in dose is undertaken in a healthcare setting.

Allergy treatment during pregnancy and breastfeeding

For pregnant women with allergies, avoidance of the allergen is the best way to control symptoms. If symptoms are severe, an antihistamine nasal spray is recommended. An oral antihistamine should be used only if antihistamine nasal sprays are inadequate.

During breastfeeding, nonsedating antihistamines are preferred. Sedating antihistamines can be used, but they may cause drowsiness and irritability in the infant. If a sedating antihistamine is required, the infant should be monitored for these effects.

Antihistamine nasal sprays are preferred to oral antihistamines. If oral antihistamines are essential for controlling symptoms, they should be taken immediately after breastfeeding. Cyproheptadine is contraindicated during breastfeeding because it lowers prolactin levels and thus may reduce lactation.

Prevention

Allergic triggers should be removed or avoided. Strategies include the following:

  • Using synthetic fiber pillows and impermeable mattress covers

  • Frequently washing bed sheets, pillowcases, and blankets in hot water

  • Frequently cleaning the house, including dusting, vacuuming, and wet-mopping

  • Removing upholstered furniture, soft toys, and carpets or frequently vacuuming upholstered furniture and carpets

  • Exterminating cockroaches to eliminate exposure

  • Using dehumidifiers in basements and other poorly aerated, damp rooms

  • Using high-efficiency particulate air (HEPA) vacuums and filters

  • Avoiding food triggers

  • Limiting pets to certain rooms or keeping them out of the house

  • For people with severe seasonal allergies, possibly moving to an area that does not have the allergen

Adjunctive nonallergenic triggers (eg, cigarette smoke, strong odors, irritating fumes, air pollution, cold temperatures, high humidity) should also be avoided or controlled when possible.

Key Points

  • Atopic reactions (commonly caused by mite feces, animal dander, pollen, or mold) are IgE-mediated allergic reactions that trigger histamine release.

  • Take a thorough history, including a detailed description of the frequency and duration of attacks, relationship of symptoms to seasons or situations, family history, possible triggers, and responses to attempted treatments because history is more reliable than testing.

  • When the history and examination do not identify the cause, skin tests or an allergen-specific serum IgE test may help identify the allergen.

  • Eliminating or avoiding the allergen is key to treatment and prevention; to relieve symptoms, use H1 blockers, topical corticosteroids, and/or mast cell stabilizers.

  • If the allergen cannot be avoided and other treatments are ineffective, immunotherapy may be needed.

More Information

The following are some English-language resources that may be useful. Please note that THE MANUAL is not responsible for the content of these resources.

Drugs Mentioned In This Article

Drug Name Select Trade
No US brand name
CHLOR-TRIMETON
VELTANE
No US trade name
AFRINOL, SUDAFED
XYZAL
BECONASE
KENALOG
Levocabastine
CLARINEX
ALLEGRA
PROMETHEGAN
PATANOL
AEROSPAN HFA
VISTARIL
CUTIVATE, FLONASE
ADRENALIN
ASTELIN, OPTIVAR
EMADINE
ALAVERT, CLARITIN
ALOMIDE
PULMICORT, RHINOCORT
ELOCON, NASONEX
ZYRTEC
TAVIST-1
ALOCRIL
ALAWAY, ZADITOR
CROLOM
Click here for Patient Education
NOTE: This is the Professional Version. CONSUMERS: Click here for the Consumer Version
Professionals also read

Also of Interest

Videos

View All
Overview of Antibody-Mediated Immunity
Video
Overview of Antibody-Mediated Immunity
Antibody-mediated immunity involves the activation of B cells and secretion of antibodies...
Overview of Type II Hypersensitivity
Video
Overview of Type II Hypersensitivity

SOCIAL MEDIA

iOS Android
iOS Android
iOS Android
TOP