Merck Manual

Please confirm that you are not located inside the Russian Federation

honeypot link

High Blood Pressure

(Hypertension)

By

George L. Bakris

, MD, University of Chicago School of Medicine

Last full review/revision Mar 2021| Content last modified Mar 2021
Click here for the Professional Version
GET THE QUICK FACTS
Topic Resources

High blood pressure (hypertension) is persistently high pressure in the arteries.

  • Often no cause for high blood pressure can be identified, but sometimes it occurs as a result of an underlying disorder of the kidneys or a hormonal disorder.

  • Obesity, a sedentary lifestyle, stress, smoking, and excessive amounts of alcohol or sodium (salt) in the diet all can play a role in the development of high blood pressure in people who have an inherited tendency to develop it.

  • In most people, high blood pressure causes no symptoms.

  • Doctors make the diagnosis after measuring blood pressure on two or more occasions.

  • People are advised to lose weight, stop smoking, and decrease the amounts of sodium and fats in their diet.

  • Antihypertensive drugs are given.

To many people, the word hypertension suggests excessive tension, nervousness, or stress. In medical terms, hypertension refers to persistently high blood pressure, regardless of the cause. Because it usually does not cause symptoms for many years—until a vital organ is damaged—high blood pressure has been called the silent killer. Uncontrolled high blood pressure increases the risk of problems such as stroke Overview of Stroke A stroke occurs when an artery to the brain becomes blocked or ruptures, resulting in death of an area of brain tissue due to loss of its blood supply (cerebral infarction) and symptoms that... read more , aneurysm Overview of Aortic Aneurysms and Aortic Dissection The aorta, which is about 1 inch (2.5 centimeters) in diameter, is the largest artery of the body. It receives oxygen-rich blood from the left ventricle and distributes it to all of the body... read more , heart failure Heart Failure (HF) Heart failure is a disorder in which the heart is unable to keep up with the demands of the body, leading to reduced blood flow, back-up (congestion) of blood in the veins and lungs, and/or... read more Heart Failure (HF) , heart attack Overview of Coronary Artery Disease (CAD) Coronary artery disease is a condition in which the blood supply to the heart muscle is partially or completely blocked. The heart muscle needs a constant supply of oxygen-rich blood. The coronary... read more Overview of Coronary Artery Disease (CAD) , and chronic kidney disease Chronic Kidney Disease Chronic kidney disease is a slowly progressive (months to years) decline in the kidneys’ ability to filter metabolic waste products from the blood. Major causes are diabetes and high blood pressure... read more .

About 75 million Americans are estimated to have high blood pressure. High blood pressure occurs more often in blacks—in 41% of black adults compared with 28% of whites and 28% of Mexican Americans. It also occurs with high frequency in people whose ancestors are from China, Japan, and other East Asian or Pacific areas (such as Koreans,Thais, Polynesians, Micronesians, Filipinos, and Maori). The consequences of high blood pressure are worse for blacks and those of Asian descent. High blood pressure occurs more often in older people—in about two thirds of people aged 65 or older, compared with only about one fourth of people aged 20 to 74. People who have normal blood pressure at age 55 have a 90% risk of developing high blood pressure at some point in their life. High blood pressure is twice as common among people who are obese as among those who are not.

In the United States, only an estimated 81% of people with high blood pressure have been diagnosed. Of people with a diagnosis of high blood pressure, about 73% receive treatment, and of the people receiving treatment, about 51% have adequately controlled blood pressure.

Spotlight on Aging: High Blood Pressure

Changes due to aging may contribute to high blood pressure with no known cause (primary hypertension). As people age, large arteries gradually stiffen and small arteries may become partially blocked. Some experts think that this stiffening combined with the narrowing of small arteries may partly explain why blood pressure increases as people age.

When blood pressure is checked, two values are recorded. The higher value reflects the highest pressure in the arteries, which is reached when the heart contracts (during systole). The lower value reflects the lowest pressure in the arteries, which is reached just before the heart begins to contract again (during diastole). Blood pressure is written as systolic pressure/diastolic pressure—for example, 120/80 mm Hg (millimeters of mercury). This reading is referred to as "120 over 80."

Classification of blood pressure

Blood pressure in adults is classified as normal, elevated blood pressure, stage 1 (mild) hypertension, or stage 2 hypertension.

However, the higher the blood pressure, the greater the risk of complications—even within the normal blood pressure range—so these limits are somewhat arbitrary.

Table
icon

A hypertensive urgency is diastolic blood pressure that is more than 120 mm Hg but has not yet caused any organ damage that is apparent to people or their doctors. A hypertensive urgency usually does not cause symptoms.

A hypertensive emergency is a particularly severe form of high blood pressure. Diastolic blood pressure is at least 120 mm Hg, and there is evidence of progressive damage in one or more vital organs (typically the brain, heart, and kidneys), often accompanied by a variety of symptoms. Hypertensive emergencies are uncommon, but they are several times more common among blacks than among whites, among men than among women, and among people in lower socioeconomic groups than among those in higher socioeconomic groups. If untreated, a hypertensive emergency can be fatal.

The Body's Control of Blood Pressure

The body has many mechanisms to control blood pressure. The body can change the

  • Amount of blood the heart pumps

  • Diameter of arteries

  • Volume of blood in the bloodstream

To increase blood pressure, the heart can pump more blood by pumping more forcefully or more rapidly. Small arteries (arterioles) can narrow (constrict), forcing the blood from each heartbeat through a narrower space than normal. Because the space in the arteries is narrower, the same amount of blood passing through them increases the blood pressure. Veins can constrict to reduce their capacity to hold blood, forcing more blood into the arteries. As a result, blood pressure increases. Fluid can be added to the bloodstream to increase blood volume and thus increase blood pressure.

To decrease blood pressure, the heart can pump less forcefully or rapidly, arterioles and veins can widen (dilate), and fluid can be removed from the bloodstream.

These mechanisms are controlled by the sympathetic division of the autonomic nervous system Autonomic nervous system The peripheral nervous system consists of more than 100 billion nerve cells (neurons) that run throughout the body like strings, making connections with the brain, other parts of the body, and... read more (the part of the nervous system that regulates internal body processes requiring no conscious effort) and by the kidneys. The sympathetic division uses several means to temporarily increase blood pressure during the fight-or-flight response (the body's physical reaction to a threat).

  • The sympathetic division stimulates the adrenal glands to release the hormones epinephrine (adrenaline) and norepinephrine (noradrenaline). These hormones stimulate the heart to beat faster and more forcefully, most arterioles to constrict, and some arterioles to dilate. The arterioles that dilate are those in areas where an increased blood supply is needed (such as in skeletal muscle—the muscles controlled by conscious effort).

  • The sympathetic division also stimulates the kidneys to decrease their excretion of sodium and water, thereby increasing blood volume. The body controls the movement of sodium in and out of cells, to prevent an excess of sodium inside cells. Excessive amounts of sodium inside cells can cause the body to become overly sensitive to stimulation by the sympathetic division.

The kidneys also respond directly to changes in blood pressure. If blood pressure increases, the kidneys increase their excretion of sodium and water, so that blood volume decreases and blood pressure returns to normal. Conversely, if blood pressure decreases, the kidneys decrease their excretion of sodium and water, so that blood volume increases and blood pressure returns to normal. The kidneys can increase blood pressure by secreting the enzyme renin, which eventually results in the production of the hormone angiotensin II.

Angiotensin II helps increase blood pressure by

  • Causing the arterioles to constrict

  • Triggering the sympathetic division of the autonomic nervous system

  • Triggering the release of two other hormones, aldosterone and vasopressin (also called antidiuretic hormone), which cause the kidneys to increase the retention of sodium and water

The kidneys normally produce substances that cause arterioles within the kidney to dilate. This helps balance the effects of hormones that cause constriction of arterioles.

Blood pressure varies naturally over a person’s life. Infants and children normally have much lower blood pressure than adults. For almost everyone living in industrialized countries such as the United States, blood pressure increases with aging. Systolic pressure increases until at least age 80, and diastolic pressure increases until age 55 to 60, then levels off or even decreases. However, for people living in some developing countries, neither systolic nor diastolic pressure increases with aging, and high blood pressure is practically nonexistent, possibly because sodium intake is low and the physical activity level is higher.

Regulating Blood Pressure: The Renin-Angiotensin-Aldosterone System

The renin-angiotensin-aldosterone system is a series of reactions designed to help regulate blood pressure.

  • When blood pressure falls (for systolic, to 100 mm Hg or lower), the kidneys release the enzyme renin into the bloodstream.

  • Renin splits angiotensinogen, a large protein that circulates in the bloodstream, into pieces. One piece is angiotensin I.

  • Angiotensin I, which is relatively inactive, is split into pieces by angiotensin-converting enzyme (ACE). One piece is angiotensin II, a hormone, which is very active.

  • Angiotensin II causes the muscular walls of small arteries (arterioles) to constrict, increasing blood pressure. Angiotensin II also triggers the release of the hormone aldosterone from the adrenal glands and vasopressin (antidiuretic hormone) from the pituitary gland.

  • Aldosterone and vasopressin cause the kidneys to retain sodium (salt). Aldosterone also causes the kidneys to excrete potassium. The increased sodium causes water to be retained, thus increasing blood volume and blood pressure.

Regulating Blood Pressure: The Renin-Angiotensin-Aldosterone System

Activity temporarily affects blood pressure, which is higher when a person is active and lower when a person rests. Blood pressure also varies with the time of day: It is highest in the morning and lowest at night during sleep. These variations are normal. Whenever a change causes a transient increase in blood pressure, one of the body's compensatory mechanisms is triggered to counteract the change and keep blood pressure at normal levels. For example, an increase in the amount of blood pumped out by the heart—which tends to increase blood pressure—causes dilation of blood vessels and an increase in the kidneys' excretion of sodium and water—which tend to reduce blood pressure.

Causes of High Blood Pressure

High blood pressure may be

  • Primary

  • Secondary

Primary hypertension

High blood pressure with no known cause is called primary (formerly called essential) hypertension. Between 85% and 95% of people with high blood pressure have primary hypertension. Several changes in the heart and blood vessels probably combine to increase blood pressure. For instance, the amount of blood pumped per minute (cardiac output) may be increased, and the resistance to blood flow may be increased because blood vessels are constricted. Blood volume may be increased also. The reasons for such changes are not fully understood but appear to involve an inherited abnormality affecting the constriction of arterioles, which help control blood pressure. Other changes may contribute to increases in blood pressure, including accumulation of excessive amounts of sodium inside cells and decreased production of substances that dilate arterioles.

Secondary hypertension

High blood pressure with a known cause is called secondary hypertension. Between 5% and 15% of people with high blood pressure have secondary hypertension.

In many of these people, high blood pressure results from

  • A kidney disorder

Many kidney disorders can cause high blood pressure because the kidneys are important in controlling blood pressure. For example, damage to the kidneys resulting from inflammation or other disorders may impair their ability to remove enough sodium and water from the body, increasing blood volume and blood pressure. Other kidney disorders that cause high blood pressure include renal artery stenosis Blockage of the Renal Arteries Gradual narrowing (stenosis) or sudden, complete blockage (occlusion) may affect arteries that supply the right or the left kidney, their branches, or a combination. Kidney failure or high blood... read more (narrowing of the artery supplying one of the kidneys), which may be due to atherosclerosis Atherosclerosis Atherosclerosis is a condition in which patchy deposits of fatty material (atheromas or atherosclerotic plaques) develop in the walls of medium-sized and large arteries, leading to reduced or... read more Atherosclerosis , kidney infection Kidney Infection Pyelonephritis is a bacterial infection of one or both kidneys. Infection can spread up the urinary tract to the kidneys, or uncommonly the kidneys may become infected through bacteria in the... read more (pyelonephritis), glomerulonephritis Glomerulonephritis Glomerulonephritis is a disorder of glomeruli (clusters of microscopic blood vessels in the kidneys with small pores through which blood is filtered). It is characterized by body tissue swelling... read more , kidney tumors Kidney Cancer Kidney cancer may cause blood in the urine, pain in the side, or fever. Cancer is most often detected by accident when an imaging test is done for another reason. Diagnosis is by computed tomography... read more , polycystic kidney disease Polycystic Kidney Disease(PKD) Polycystic kidney disease is a hereditary disorder in which many fluid-filled sacs (cysts) form in both kidneys. The kidneys grow larger but have less functioning tissue. Polycystic kidney disease... read more , injury to a kidney, and radiation therapy affecting a kidney.

In a few people, secondary hypertension is caused by another disorder, such as

  • Hormonal disorders

  • Use of certain drugs

Drugs that can cause or worsen high blood pressure include alcohol (excessive use), cocaine, corticosteroids, nonsteroidal anti-inflammatory drugs (NSAIDs), oral contraceptives (birth control pills), and sympathomimetics (certain decongestants in cold remedies, such as pseudoephedrine and phenylephrine).

Arteriosclerosis Arteriosclerosis Atherosclerosis is a condition in which patchy deposits of fatty material (atheromas or atherosclerotic plaques) develop in the walls of medium-sized and large arteries, leading to reduced or... read more Arteriosclerosis interferes with the body's control of blood pressure, increasing the risk of high blood pressure. Arteriosclerosis makes arteries stiff, preventing the dilation that would otherwise return blood pressure to normal.

Aggravating factors

Stress tends to cause blood pressure to increase temporarily, but blood pressure usually returns to normal once the stress is over. An example is "white coat hypertension," in which the stress of visiting a doctor's office causes blood pressure to increase enough to be diagnosed as high blood pressure in someone who has normal blood pressure at other times. People with "white coat hypertension" seem to have a slightly higher risk of developing permanent high blood pressure, but they probably do not need treatment unless their blood pressure is very high in the office.

Symptoms of High Blood Pressure

In most people, high blood pressure causes no symptoms, despite the coincidental occurrence of certain symptoms that are widely, but erroneously, attributed to high blood pressure: headaches, nosebleeds, dizziness, a flushed face, and fatigue. People with high blood pressure may have these symptoms, but the symptoms occur just as frequently in people with normal blood pressure.

Severe or long-standing high blood pressure that is untreated can cause symptoms because it can damage the brain, eyes, heart, and kidneys. Symptoms include headache, fatigue, nausea, vomiting, shortness of breath, and restlessness. Occasionally, severe high blood pressure causes the brain to swell, resulting in nausea, vomiting, worsening headache, drowsiness, confusion, seizures, sleepiness, and even coma. This condition is called hypertensive encephalopathy.

Severe high blood pressure increases the workload of the heart and may cause chest pain and/or shortness of breath. Sometimes very high blood pressure causes the large artery that carries blood from the heart (the aorta) to tear, causing chest or abdominal pain. People who have such symptoms have hypertensive emergencies and, as such, require emergency treatment.

If high blood pressure is due to a pheochromocytoma, symptoms may include severe headache, anxiety, an awareness of a rapid or irregular heart rate (palpitations), excessive perspiration, tremor, and paleness. These symptoms result from high levels of the hormones epinephrine and norepinephrine, which are secreted by the pheochromocytoma.

Did You Know...

  • Certain symptoms, such as headaches, nosebleeds, dizziness, a flushed face, and fatigue, are commonly attributed to high blood pressure but actually occur equally often in people who do not have high blood pressure.

Complications of high blood pressure

Long-standing high blood pressure can damage the heart and blood vessels and increase the risk of

With longstanding high blood pressure, the heart enlarges and the heart's walls thicken because the heart has to work harder to pump blood. The thickened walls are stiffer than normal. Consequently, the heart's chambers do not expand normally and are harder to fill with blood, further increasing the heart's workload. These changes in the heart may result in abnormal heart rhythms Overview of Abnormal Heart Rhythms Abnormal heart rhythms (arrhythmias) are sequences of heartbeats that are irregular, too fast, too slow, or conducted via an abnormal electrical pathway through the heart. Heart disorders are... read more Overview of Abnormal Heart Rhythms or heart failure Heart Failure (HF) Heart failure is a disorder in which the heart is unable to keep up with the demands of the body, leading to reduced blood flow, back-up (congestion) of blood in the veins and lungs, and/or... read more Heart Failure (HF) .

High blood pressure causes thickening of the walls of blood vessels and also makes them more likely to develop hardening of the arteries (atherosclerosis Atherosclerosis Atherosclerosis is a condition in which patchy deposits of fatty material (atheromas or atherosclerotic plaques) develop in the walls of medium-sized and large arteries, leading to reduced or... read more Atherosclerosis ). People with thickened blood vessel walls and atherosclerosis are at higher risk of stroke, heart attack, vascular dementia, and kidney failure. Stroke and heart attack are considered atherosclerotic cardiovascular disease (ASCVD).

Diagnosis of High Blood Pressure

  • Measuring blood pressure

For the most accurate readings, those that are used to diagnose someone with high blood pressure as opposed to a casual check, blood pressure must be measured following a specific procedure (see Measuring Blood Pressure Measuring Blood Pressure High blood pressure (hypertension) is persistently high pressure in the arteries. Often no cause for high blood pressure can be identified, but sometimes it occurs as a result of an underlying... read more Measuring Blood Pressure ). Blood pressure is measured after a person sits for 5 minutes. The person must have had no exercise, caffeine, or smoking for at least 30 minutes before the measurement. A reading of 130/80 mm Hg or more is considered high, but a diagnosis cannot be based on a single high reading. Sometimes, even several high readings are not enough to make the diagnosis—because, for example, the readings may vary too much. If a person has an initial high reading, blood pressure is measured again during the same visit and then measured twice on at least two other days to make sure that the high blood pressure is still present.

Measuring Blood Pressure

Several instruments can measure blood pressure quickly and with little discomfort. A sphygmomanometer is commonly used. It consists of a soft rubber cuff connected to a rubber bulb that is used to inflate the cuff and a meter that registers the pressure of the cuff. The meter may be a dial or a glass column filled with mercury. Blood pressure is measured in millimeters of mercury (mm Hg) because the first instrument used to measure it was a mercury column.

When a sphygmomanometer is used, a person sits with legs uncrossed and back supported. An arm is bared (if a sleeve is rolled up, caution is needed to ensure that it is not tight around the arm), bent, and resting on a table, so that the arm is about the same level as the heart. The cuff is wrapped around the arm. Using a cuff that is proportional to the size of the arm is important. If the cuff is too small, the blood pressure reading is too high. If the cuff is too large, the reading is too low.

Listening with a stethoscope placed over the artery below the cuff, a health care practitioner inflates the cuff by squeezing the bulb until the cuff compresses the artery tightly enough to temporarily stop blood flow, usually to a pressure that is about 30 mm Hg higher than the person's usual systolic pressure (the pressure exerted when the heart beats). Then the cuff is gradually deflated. The pressure at which the practitioner first hears a pulse in the artery is the systolic pressure. The cuff continues to be deflated, and at some point, the sound of blood flowing stops. The pressure at this point is the diastolic pressure (the pressure exerted when the heart relaxes, between beats).

Some instruments can measure blood pressure automatically, without use of a stethoscope or rubber bulb. These devices may fit around the upper arm, finger, or wrist. For people older than 50, blood pressure measured at the upper arm is the most accurate. Sometimes a precise measurement of blood pressure is needed—for example, for a person in an intensive care unit. In such cases, a catheter can be inserted inside an artery to measure blood pressure directly.

Instruments to measure blood pressure are available for home use by people who have high blood pressure.

Measuring Blood Pressure

If there is still doubt, a 24-hour blood pressure monitor may be used. It is a portable battery-operated device, worn on the hip, connected to a blood pressure cuff, worn on the arm. This monitor repeatedly records blood pressure throughout the day and night over a 24-hour or 48-hour period. The readings determine not only whether high blood pressure is present but also how severe it is.

Pseudohypertension, blood pressure that is measured as high when it is not, occurs in people with very stiff arteries (most commonly, in older people). It occurs when the artery in the arm is too stiff to be compressed by the blood pressure cuff, and as a result, blood pressure cannot be measured accurately.

Masked hypertension occurs when blood pressure is measured as normal when it is high. Masked hypertension affects up to 10% of people who have high blood pressure. Recognizing this type of high blood pressure may be impossible unless blood pressure is measured at home or if a complication (for example, heart failure) is suspected to have been caused by high blood pressure.

After high blood pressure has been diagnosed, its effects on key organs, especially the blood vessels, heart, brain, eyes, and kidneys, are usually evaluated. Doctors also look for the cause of high blood pressure. The number and type of tests that are done to look for organ damage and to determine the cause of high blood pressure vary from person to person. In general, routine evaluation for all people with high blood pressure involves a medical history Medical History and Physical Examination for Heart and Blood Vessel Disorders The medical history and physical examination can suggest that a person has a heart or blood vessel disorder that requires additional testing for accurate diagnosis. When doctors "take a medical... read more Medical History and Physical Examination for Heart and Blood Vessel Disorders , a physical examination Medical History and Physical Examination for Heart and Blood Vessel Disorders The medical history and physical examination can suggest that a person has a heart or blood vessel disorder that requires additional testing for accurate diagnosis. When doctors "take a medical... read more Medical History and Physical Examination for Heart and Blood Vessel Disorders , electrocardiography Electrocardiography Electrocardiography (ECG) is a quick, simple, painless procedure in which the heart’s electrical impulses are amplified and recorded. This record, the electrocardiogram (also known as an ECG)... read more Electrocardiography (ECG), blood tests (including the hematocrit level [the portion of total blood volume made up of red blood cells], potassium and sodium levels, and tests of kidney function Kidney Function Tests Doctors can assess kidney function by doing tests on blood and urine samples. Creatinine, a waste product, is increased in the blood when kidney function is decreased by a large amount. Creatinine... read more ), and urine tests.

The physical examination includes checking the area of the abdomen over the kidneys for tenderness and placing a stethoscope over the abdomen to listen for a bruit (the sound caused by blood rushing through a narrowed artery) in the artery supplying each kidney.

The retina in each eye is examined with an ophthalmoscope Ophthalmoscopy A person who has eye symptoms should be checked by a doctor. However, some eye disorders cause few or no symptoms in their early stages, so the eyes should be checked regularly (every 1 to 2... read more . The retina is the only place doctors can directly view the effects of high blood pressure on arterioles. The assumption is that the changes in the arterioles of the retina are similar to changes in arterioles and other blood vessels elsewhere in the body, such as in the kidneys. By determining the degree of damage to the retina (hypertensive retinopathy Hypertensive Retinopathy Hypertensive retinopathy is damage to the retina (the transparent, light-sensitive structure at the back of the eye) caused by high blood pressure. When blood pressure is high (a condition called... read more ), doctors can classify the severity of high blood pressure.

A stethoscope is used to detect heart sounds. An abnormal heart sound, called the fourth heart sound, is one of the earliest changes in the heart caused by high blood pressure. This sound develops because the left atrium of the heart has to contract harder to fill the enlarged, stiff left ventricle, which pumps blood to all of the body except the lungs.

Kidney damage can be detected by urine and blood tests. Urine tests can detect early evidence of kidney damage. The presence of blood cells and albumin (the most abundant protein in blood) in the urine may indicate such damage. Symptoms of kidney damage (such as lethargy, poor appetite, and fatigue) do not usually develop until 70 to 80% of kidney function is lost.

Diagnosis of cause

The higher the blood pressure and the younger the person, the more extensive the search for a cause is likely to be, even though a cause is identified in less than 10% of people. A more extensive evaluation may include x-ray, ultrasonography, and radionuclide imaging of the kidneys and their blood supply as well as a chest x-ray. Blood and urine tests are done to measure the levels of certain hormones, such as epinephrine, aldosterone, and cortisol.

The cause may be suggested by abnormal results of a physical examination or by the symptoms. For example, a bruit in the artery to a kidney may suggest renal artery stenosis Blockage of the Renal Arteries Gradual narrowing (stenosis) or sudden, complete blockage (occlusion) may affect arteries that supply the right or the left kidney, their branches, or a combination. Kidney failure or high blood... read more (narrowing of the artery supplying a kidney). Various combinations of symptoms may suggest high levels of the hormones epinephrine and norepinephrine produced by a pheochromocytoma Pheochromocytoma A pheochromocytoma is a tumor that usually originates from the adrenal glands’ chromaffin cells, causing overproduction of catecholamines, powerful hormones that induce high blood pressure and... read more . The presence of a pheochromocytoma is confirmed when the breakdown products of these hormones are detected in the urine. Other rare causes of high blood pressure may be detected by certain routine tests. For example, measuring the potassium level in the blood can help detect hyperaldosteronism Hyperaldosteronism In hyperaldosteronism, overproduction of aldosterone leads to fluid retention and increased blood pressure, weakness, and, rarely, periods of paralysis. Hyperaldosteronism can be caused by a... read more .

Treatment of High Blood Pressure

  • Diet and exercise

  • Drugs to lower blood pressure

Primary hypertension cannot be cured, but it can be controlled to prevent complications. Everyone with elevated blood pressure or any stage of hypertension should change their lifestyle. The decision to prescribe drugs is based on the actual blood pressure level and whether people have atherosclerotic cardiovascular disease (ASCVD) or have a more than 10% risk of developing it in the next 10 years.

Table
icon

Doctors often recommend that people with high blood pressure monitor their own blood pressure at home. Self-monitoring probably helps motivate people to follow a doctor's recommendations regarding treatment.

Treatment goals

The goal for antihypertensive therapy is to decrease blood pressure to below 130/80 mm Hg in most people. However, if decreasing a person's blood pressure to less than 130/80 mm Hg causes problems, such as fainting, light headedness, memory loss, or dizziness, doctors may recommend a higher blood pressure goal but not higher than 140/90. For some people, for example, those at high risk of heart disease, a lower systolic goal may be appropriate.

Lifestyle changes

Overweight people with high blood pressure are advised to lose weight. Losing as few as 10 pounds (4.5 kilograms) can lower blood pressure. For people who are obese or who have diabetes or high cholesterol levels, changes in diet (one rich in fruits, vegetables, and low-fat dairy products, with reduced saturated and total fat content) are important for reducing the risk of heart and blood vessel disease.

Reducing the intake of alcohol and sodium (while maintaining an adequate intake of calcium, magnesium, and potassium) may make drug therapy for high blood pressure unnecessary. Daily alcohol intake should be reduced to no more than 2 drinks (a daily total of 24 ounces [about 1 liter] of beer, 8 ounces [about 240 milliliters] of wine, or 2 ounces [about 60 milliliters] of 100-proof whiskey or other liquor) in men and 1 drink in women. Daily sodium intake should be reduced to less than 2½ grams, or sodium chloride (salt) intake, to 6 grams.

Moderate aerobic exercise is helpful. People with primary hypertension do not have to restrict their physical activity as long as their blood pressure is controlled. Regular exercise helps reduce blood pressure and weight and improves the functioning of the heart and overall health (see Benefits of Exercise Benefits of Exercise Regular exercise makes the heart stronger and the lungs fitter, enabling the cardiovascular system to deliver more oxygen to the body with every heartbeat and the pulmonary system to increase... read more ).

Drug therapy

Drugs that are used in the treatment of high blood pressure are called antihypertensives. With the wide variety of antihypertensives available, high blood pressure can be controlled in almost anyone, but treatment has to be tailored to the individual. Treatment is most effective when the person and doctor communicate well and collaborate on the treatment program.

Different types of antihypertensives reduce blood pressure by different mechanisms, so many different treatment strategies are possible. For some people, doctors use a stepped approach to drug therapy: They start with one type of antihypertensive and add others as necessary. For other people, doctors find a sequential approach is preferable: They prescribe one antihypertensive, and if it is ineffective, they stop it and prescribe another type. For people with blood pressure at or above 140/90 mm Hg, usually two drugs are started at the same time. In choosing an antihypertensive, doctors consider such factors as

  • The person's age, sex, and race

  • The severity of high blood pressure

  • The presence of other conditions, such as diabetes or high blood cholesterol levels

  • Potential side effects, which vary from drug to drug

  • The costs of the drugs and of tests needed to check for certain side effects

A majority of people (more than 74%) ultimately require two or more drugs to reach their blood pressure goal.

Most people tolerate their prescribed antihypertensive drugs without problems. But any antihypertensive drug can cause side effects. So if side effects develop, a person should tell the doctor, who can adjust the dose or substitute another drug. Usually, an antihypertensive drug must be taken indefinitely to control blood pressure.

Treatment of secondary hypertension

The cause of the high blood pressure is treated if possible. Treating kidney disease can sometimes return blood pressure to normal or at least lower it, so that antihypertensive therapy is more effective. A narrowed artery to the kidney may be widened by inserting a balloon-tipped catheter and inflating the balloon (angioplasty Percutaneous Coronary Intervention Coronary artery disease is a condition in which the blood supply to the heart muscle is partially or completely blocked. The heart muscle needs a constant supply of oxygen-rich blood. The coronary... read more Percutaneous Coronary Intervention ). Or the narrowed part of the artery supplying the kidney can be bypassed. Often such surgery cures high blood pressure. Tumors that cause high blood pressure, such as a pheochromocytoma Pheochromocytoma A pheochromocytoma is a tumor that usually originates from the adrenal glands’ chromaffin cells, causing overproduction of catecholamines, powerful hormones that induce high blood pressure and... read more , usually can be removed surgically.

If people still have high blood pressure despite taking three different drugs, doctors in Europe sometimes insert a catheter into the artery to each kidney. The catheter produces radio waves that destroy the sympathetic nerves along the renal arteries. The first studies on this procedure appeared to show that it lowered blood pressure. However, a much larger and more complete study did not show that the procedure worked. This treatment is not available in the United States.

Another treatment for high blood pressure is called pacemaker therapy. An electrode is implanted in the neck, where it stimulates certain nerve endings that help regulate blood pressure. This treatment is not available in the United States, but it is available in Europe and Canada.

Treatment of hypertensive urgencies and emergencies

In hypertensive emergencies, blood pressure must be lowered rapidly. Hypertensive emergencies are treated in hospital intensive care units. Most drugs used to rapidly lower blood pressure, such as fenoldopam, nitroprusside, nicardipine, or labetalol, are given intravenously.

Prognosis of High Blood Pressure

Untreated high blood pressure increases a person's risk of developing heart disease (such as heart failure, heart attack, or sudden cardiac death), kidney failure, or stroke at an early age. High blood pressure is the most important risk factor for stroke. It is also one of the three most important risk factors for heart attack that a person can modify (the other two are smoking and high cholesterol levels in the blood).

Treatment that lowers high blood pressure greatly decreases the risk of stroke and heart failure. Such treatment may also decrease the risk of a heart attack, although not as dramatically.

More Information

The following is an English-language resource that may be useful. Please note that THE MANUAL is not responsible for the content of this resource.

  • American Heart Association: High blood pressure: Comprehensive resource to help people understand causes of high blood pressure and manage the lifestyle changes required for treatment

Drugs Mentioned In This Article

Generic Name Select Brand Names
AFRINOL, SUDAFED
NITROPRESS
No US brand name
CARDENE
CORLOPAM
NOTE: This is the Consumer Version. DOCTORS: Click here for the Professional Version
Click here for the Professional Version
OTHER TOPICS IN THIS CHAPTER
Others also read
Test your knowledge
Swelling
Swelling is a condition caused by excess fluid in the tissues. The fluid involved in swelling is primarily water. Swelling may occur in one or several parts of the body, often the feet and lower legs. Swelling that occurs throughout the body has different causes than swelling in a single limb or part of a limb. Which of the following is a frequent cause of swelling in a single limb or part of a limb?
Download the Manuals App iOS ANDROID
Download the Manuals App iOS ANDROID
Download the Manuals App iOS ANDROID

Also of Interest

Download the Manuals App iOS ANDROID
Download the Manuals App iOS ANDROID
Download the Manuals App iOS ANDROID
TOP