Percutaneous coronary interventions (PCI) include percutaneous transluminal coronary angioplasty (PTCA) with or without stent insertion. Primary indications are treatment of
Myocardial ischemia
Acute myocardial infarction Overview of Acute Coronary Syndromes (ACS) Acute coronary syndromes result from acute obstruction of a coronary artery. Consequences depend on degree and location of obstruction and range from unstable angina to non–ST-segment elevation... read more (particularly in patients with developing or established cardiogenic shock)
PTCA and stent placement within 90 minutes of onset of pain is the optimal treatment of transmural ST-segment–elevation myocardial infarction (STEMI Infarct extent Acute myocardial infarction is myocardial necrosis resulting from acute obstruction of a coronary artery. Symptoms include chest discomfort with or without dyspnea, nausea, and/or diaphoresis... read more ). Elective PCI may be appropriate for post-myocardial infarction (MI) patients who have recurrent or inducible angina before hospital discharge and for patients who have angina and remain symptomatic despite medical treatment.
Percutaneous transluminal angioplasty (PTA) is also used to treat peripheral arterial disease Percutaneous transluminal angioplasty (PTA) Peripheral arterial disease (PAD) is atherosclerosis of the extremities (virtually always lower) causing ischemia. Mild PAD may be asymptomatic or cause intermittent claudication; severe PAD... read more .
Procedure
PTCA is done via percutaneous femoral, radial, or brachial artery puncture. The radial approach is increasingly used because it reduces patient discomfort, improves time to ambulation, and reduces the incidence of some complications (eg, bleeding, pseudoaneurysm formation).
A guiding catheter is inserted into a large peripheral artery and threaded to the appropriate coronary ostium. A balloon-tipped catheter, guided by fluoroscopy or intravascular ultrasonography, is aligned within the stenosis, then inflated to disrupt the atherosclerotic plaque and dilate the artery. Angiography is repeated after the procedure to document any changes. The procedure is commonly done in 2 or 3 vessels as needed.
Stents
Stents for coronary arteries are expandable wire mesh cylinders that help hold stenotic areas open. Stents are most useful for
Short lesions in large native coronary arteries not previously treated with PTCA
Focal lesions in saphenous vein grafts
Treatment of abrupt closure during PTCA
Stents are now used frequently for acute myocardial infarction, ostial or left main disease, chronic total occlusions, and bifurcation lesions.
Types of stents
Bare metal stents (BMS) are made of nickel-titanium alloy. Drug eluting stents (DES) have drugs (eg, 1st-generation: sirolimus, paclitaxel; 2nd-generation: everolimus, ridaforolimus, zotarolimus) bonded to the metal that limit neointimal proliferation to reduce the risk of restenosis. Radioactive stents or pre-stent intracoronary radiation using radioactive pellets (brachytherapy) have not proven effective at limiting restenosis. Biodegradable stents are being developed, but use is currently limited to clinical trials.
Anticoagulation and ancillary therapy
Various anticoagulation and antiplatelet regimens are used during and after angioplasty to reduce the incidence of thrombosis at the site of balloon dilation. Thienopyridines (clopidogrel, prasugrel, ticagrelor) and glycoprotein IIb/IIIa inhibitors (abciximab, eptifibatide, tirofiban) are the standard of care for patients with unstable non-ST-segment elevation myocardial infarction. Thienopyridines (often in combination with aspirin) are continued for at least 6 to 12 months after PCI to decrease the risk of in-stent thrombosis until endothelialization of the stent has occurred. Calcium channel blockers and nitrates may also be given to reduce risk of coronary spasm.
Contraindications
Relative contraindications to PCI include
Coagulopathy
A single diseased vessel providing all perfusion to the myocardium
Critical left main coronary stenosis without collateral flow from a native vessel or previous bypass graft to the left anterior descending artery
Diffusely diseased vessels without focal stenoses
Hypercoagulable states
Lack of cardiac surgical support
Stenosis < 50%
Total occlusion of a coronary artery
Although lack of cardiac surgical support is sometimes considered an absolute contraindication to PCI, many experts advocate that when revascularization is required urgently in STEMI, experienced operators in approved catheterization laboratories should proceed with PCI even if surgical backup is not available.
Although bypass is typically preferred for patients with critical left main coronary stenosis without collateral flow from either a native vessel or previous bypass graft, PCI is increasingly being used in this scenario in selected patients.
Complications
The main complications of balloon angioplasty and stent placement are
Arterial dissection
Bleeding caused by adjunctive anticoagulation
Restenosis
Standard complications of cardiac catheterization and coronary angiography Complications of Cardiac Catheterization Cardiac catheterization is the passage of a catheter through peripheral arteries or veins into cardiac chambers, the pulmonary artery, and coronary arteries and veins. Cardiac catheterization... read more
Thrombosis and distal embolization
Of all angiographic procedures, PCI has the highest risk of contrast nephropathy Contrast Nephropathy Contrast nephropathy is worsening of renal function after IV administration of radiocontrast and is usually temporary. Diagnosis is based on a progressive rise in serum creatinine 24 to 48 hours... read more (due to increased contrast load and procedural time); this risk can be reduced by preprocedural hydration and possibly by use of a nonionic contrast agent or hemofiltration in patients with preexisting renal insufficiency.
Compared to coronary angiography Complications of Cardiac Catheterization Cardiac catheterization is the passage of a catheter through peripheral arteries or veins into cardiac chambers, the pulmonary artery, and coronary arteries and veins. Cardiac catheterization... read more without angioplasty or stenting, risk of death, MI, and stroke is greater.
The mortality rate following PCI varies according to patient and technical factors. Mortality scoring systems have been developed to help clinicians determine the risk of death following PCI and can be useful when counseling patients regarding available treatment options (PCI vs medical management alone).
Thrombosis
Stent thrombosis causes complete blockage and may occur at any time:
Acutely (immediately during or after the procedure)
Subacutely (within 30 days)
Late (> 30 days)
Stent thrombosis may be due to inadequate stent expansion or apposition at the time of the procedure, discontinuation of dual antiplatelet therapy (eg, due to nonadherence, need for noncardiac surgery), or both. Rarely, the stent may break up an intracoronary clot (ie, as may be present in acute MI), which may embolize distally and cause myocardial infarction. Use of protection strategies (eg, temporarily blocking blood flow within the artery using a balloon and then aspirating the emboli, deploying a small filter distal to the site of PCI to capture emboli) may improve outcome in PCI done on a previous saphenous vein graft but is not commonly done.
With balloon angioplasty alone, risk of acute thrombosis is about 5 to 10%.
Use of stents has almost eliminated the need for emergency coronary artery bypass grafting following PCI; the rate of acute and subacute thrombosis is < 1%. However, using a drug-eluting stent increases risk of late stent thrombosis, about 0.6%/year up to 3 years.
Restenosis
Restenosis is typically due to collagen deposition and thus does not occur until several weeks after the procedure or later; it may cause partial or, less commonly, complete vessel blockage.
With balloon angioplasty alone, the risk of subacute restenosis is about 5%, and the overall restenosis rate is about 30 to 45%.
With stent use, the rate of subacute restenosis is < 1%. With bare-metal stents, risk of late restenosis is 20 to 30%. Use of a drug-eluting stent lowers late restenosis risk to about 5 to 10%.
Arterial dissection
Arterial dissection is usually detected immediately as various abnormal patterns of contrast filling within the coronary arteries. Insertion of another stent often reopens the dissected segment.
Drugs Mentioned In This Article
Drug Name | Select Trade |
---|---|
sirolimus |
HYFTOR, Rapamune |
paclitaxel |
Onxol , Taxol |
everolimus |
Afinitor , Afinitor DISPERZ, Zortress |
clopidogrel |
Plavix |
prasugrel |
Effient |
ticagrelor |
BRILINTA |
abciximab |
ReoPro |
eptifibatide |
Integrilin |
tirofiban |
Aggrastat |
aspirin |
Anacin Adult Low Strength, Aspergum, Aspir-Low, Aspirtab , Aspir-Trin , Bayer Advanced Aspirin, Bayer Aspirin, Bayer Aspirin Extra Strength, Bayer Aspirin Plus, Bayer Aspirin Regimen, Bayer Children's Aspirin, Bayer Extra Strength, Bayer Extra Strength Plus, Bayer Genuine Aspirin, Bayer Low Dose Aspirin Regimen, Bayer Womens Aspirin , BeneHealth Aspirin, Bufferin, Bufferin Extra Strength, Bufferin Low Dose, DURLAZA, Easprin , Ecotrin, Ecotrin Low Strength, Genacote, Halfprin, MiniPrin, St. Joseph Adult Low Strength, St. Joseph Aspirin, VAZALORE, Zero Order Release Aspirin, ZORprin |