Merck Manual

Please confirm that you are a health care professional

honeypot link

Overview of Disorders of Potassium Concentration


James L. Lewis III

, MD, Brookwood Baptist Health and Saint Vincent’s Ascension Health, Birmingham

Reviewed/Revised Sep 2023

Potassium is the most abundant intracellular cation, but only about 2% of total body potassium is extracellular. Because most intracellular potassium is contained within muscle cells, total body potassium is roughly proportional to lean body mass. An average 70-kg adult has about 3500 mEq (3500 mmol) of potassium.

Potassium is a major determinant of intracellular osmolality. The ratio between potassium concentration in the intracellular fluid (ICF) and concentration in the extracellular fluid (ECF) strongly influences cell membrane polarization, which in turn influences important cell processes, such as the conduction of nerve impulses and muscle (including myocardial) cell contraction. Thus, relatively small alterations in serum potassium concentration can have significant clinical manifestations. Total serum potassium concentration may be

In the absence of factors that shift potassium in or out of cells, the serum potassium concentration correlates closely with total body potassium content. Once intracellular and extracellular concentrations are stable, a decrease in serum potassium concentration of about 1 mEq/L (1 mmol/L) indicates a total potassium deficit of about 200 to 400 mEq (200 to 400 mmol). Patients with stable potassium concentration < 3 mEq/L (< 3 mmol/L) typically have a significant potassium deficit.

Pearls & Pitfalls

  • A decrease in serum potassium concentration of about 1 mEq/L (1 mmol/L) indicates a total potassium deficit of about 200 to 400 mEq (200 to 400 mmol).

Potassium shifts

Factors that shift potassium in or out of cells include the following:

  • Insulin concentrations

  • Beta-adrenergic activity

  • Acid-base status

Insulin moves potassium into cells; high concentrations of insulin thus lower serum potassium concentration. Low concentrations of insulin, as in diabetic ketoacidosis Diabetic Ketoacidosis (DKA) Diabetic ketoacidosis (DKA) is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with... read more , cause potassium to move out of cells, thus raising serum potassium, sometimes even in the presence of total body potassium deficiency.

Beta-adrenergic agonists, especially selective beta 2-agonists, move potassium into cells, whereas beta-blockade and alpha-agonists promote movement of potassium out of cells.

Acute metabolic acidosis Metabolic Acidosis Metabolic acidosis is primary reduction in bicarbonate (HCO3), typically with compensatory reduction in carbon dioxide partial pressure (Pco2); pH may be markedly low or slightly... read more causes potassium to move out of cells, whereas acute metabolic alkalosis Metabolic Alkalosis Metabolic alkalosis is primary increase in bicarbonate (HCO3) with or without compensatory increase in carbon dioxide partial pressure (Pco2); pH may be high or nearly normal. Common... read more causes potassium to move into cells. However, changes in serum bicarbonate concentration may be more important than changes in pH; acidosis caused by accumulation of mineral acids (nonanion gap, hyperchloremic acidosis) is more likely to elevate serum potassium. In contrast, metabolic acidosis due to accumulation of organic acids (increased anion gap Calculation of the anion gap Acid-base disorders are pathologic changes in carbon dioxide partial pressure (Pco2) or serum bicarbonate (HCO3) that typically produce abnormal arterial pH values. Acidemia is serum... read more acidosis) does not cause hyperkalemia. Thus, the hyperkalemia common in diabetic ketoacidosis results more from insulin deficiency than from acidosis.

Potassium metabolism

Dietary potassium intake normally varies between 40 and 150 mEq (40 and 150 mmol)/day. In the steady state, fecal losses are usually close to 10% of intake. The remaining 90% is excreted in the urine, so alternations in renal potassium secretion greatly affect potassium balance.

When potassium intake is > 150 mEq (> 150 mmol)/day, about 50% of the excess potassium appears in the urine over the next several hours. Most of the remainder is transferred into the intracellular compartment, thus minimizing the rise in serum potassium. When elevated potassium intake continues, aldosterone secretion is stimulated and thus renal potassium excretion rises. In addition, potassium absorption from stool appears to be under some regulation and may fall by 50% in chronic potassium excess.

When potassium intake falls, intracellular potassium again serves to buffer wide swings in serum potassium concentration. Renal potassium conservation develops relatively slowly in response to decreases in dietary potassium and is far less efficient than the kidneys’ ability to conserve sodium. Thus, potassium depletion is a frequent clinical issue. Urinary potassium excretion of 10 mEq (10 mmol) /day represents near-maximal renal potassium conservation and implies significant potassium depletion.

Potassium excretion can be either enhanced or diminished in acidosis depending upon the type of acidosis, volume status and renal function. Increased delivery of sodium to the distal nephrons, as occurs with high sodium intake or loop diuretic therapy, promotes potassium excretion.

Pseudohypokalemia and pseudohyperkalemia

Pseudohypokalemia, or falsely low serum potassium, occasionally is found when blood specimens from patients with chronic myeloid leukemia Chronic Myeloid Leukemia (CML) Chronic myeloid leukemia (CML) occurs when a pluripotent stem cell undergoes malignant transformation and clonal myeloproliferation, leading to a striking overproduction of mature and immature... read more and a white blood cell count > 100,000/mcL (100 × 109/L) remain at room temperature before being processed because abnormal leukocytes in the sample take up serum potassium. It is prevented by prompt separation of plasma or serum in blood samples.

Pseudohyperkalemia, or falsely elevated serum potassium, is more common, typically occurring due to hemolysis and release of intracellular potassium. To prevent false results, phlebotomy personnel should not rapidly aspirate blood through a narrow-gauge needle or excessively agitate blood samples. Pseudohyperkalemia can also result from platelet count > 400,000/mcL (> 400 × 109/L) due to release of potassium from platelets during clotting; in these cases, the plasma potassium (unclotted blood), as opposed to serum potassium, is normal.

NOTE: This is the Professional Version. CONSUMERS: View Consumer Version
quiz link

Test your knowledge

Take a Quiz!