Merck Manual

Please confirm that you are a health care professional

honeypot link

Vitamin K Deficiency


Larry E. Johnson

, MD, PhD, University of Arkansas for Medical Sciences

Reviewed/Revised Nov 2022

Vitamin K deficiency results from extremely inadequate intake or fat malabsorption. Risk of bleeding is increased by use of coumarin anticoagulants. Deficiency is particularly common among breastfed infants. It impairs clotting. Diagnosis is suspected based on routine coagulation study findings and confirmed by response to vitamin K. Treatment consists of vitamin K given orally or, when fat malabsorption is the cause or when risk of bleeding is high, parenterally.

Vitamin K deficiency decreases levels of prothrombin and other vitamin K–dependent coagulation factors, causing defective coagulation and, potentially, bleeding.

Worldwide, vitamin K deficiency causes infant morbidity and mortality.

Vitamin K deficiency causes hemorrhagic disease of the newborn Blood loss , which usually occurs 1 to 7 days postpartum. In affected neonates, birth trauma can cause intracranial hemorrhage. A late form of this disease can occur in infants about 2 to 12 weeks old, typically in infants who are breastfed and are not given vitamin K supplements. If the mother has taken phenytoin antiseizure drugs, coumarin anticoagulants, or cephalosporin antibiotics, the risk of hemorrhagic disease is increased.

In healthy adults, dietary vitamin K deficiency is uncommon because vitamin K is widely distributed in green vegetables and the bacteria of the normal gut synthesize menaquinones.

Physiology of Vitamin K Deficiency

Vitamin K1 (phylloquinone) is dietary vitamin K. Sources include green leafy vegetables (especially collards, spinach, and salad greens), soy beans, and vegetable oils. Dietary fat enhances its absorption. Infant formulas contain supplemental vitamin K. After the neonatal period, bacteria in the gastrointestinal tract synthesize vitamin K, which is absorbed and used by the body.

Vitamin K2 refers to a group of compounds (menaquinones) synthesized by bacteria in the intestinal tract; the amount synthesized does not satisfy the vitamin K requirement.

Vitamin K controls the formation of coagulation factors II (prothrombin), VII, IX, and X in the liver (see table ). Other coagulation factors dependent on vitamin K are protein C, protein S, and protein Z; proteins C and S are anticoagulants. Metabolic pathways conserve vitamin K. Once vitamin K has participated in formation of coagulation factors, the reaction product, vitamin K epoxide, is enzymatically converted to the active form, vitamin K hydroquinone.

The actions of vitamin K–dependent proteins require calcium. The vitamin K–dependent proteins, osteocalcin and matrix gamma-carboxy-glutamyl (Gla) protein, may have important roles in bone and other tissues. Forms of vitamin K are common therapy for osteoporosis in Japan and other countries.

Etiology of Vitamin K Deficiency

Neonates are prone to vitamin K deficiency because of the following:

  • The placenta transmits lipids and vitamin K relatively poorly.

  • The neonatal liver is immature with respect to prothrombin synthesis.

  • Breast milk is low in vitamin K, containing about 2.5 mcg/L (cow’s milk contains 5000 mcg/L).

  • The neonatal gut is sterile during the first few days of life.

In adults, vitamin K deficiency can result from

Coumarin anticoagulants interfere with the synthesis of vitamin–K dependent coagulation proteins (factors II, VII, IX, and X) in the liver.

Certain antibiotics (particularly some cephalosporins and other broad-spectrum antibiotics), salicylates, megadoses of vitamin E, and hepatic insufficiency increase risk of bleeding in patients with vitamin K deficiency.

Inadequate intake of vitamin K is unlikely to cause symptoms.

Symptoms and Signs of Vitamin K Deficiency

Bleeding is the usual manifestation. Easy bruisability and mucosal bleeding (especially epistaxis, gastrointestinal [GI] hemorrhage, menorrhagia, and hematuria) can occur. Blood may ooze from puncture sites or incisions.

Hemorrhagic disease of the newborn and late hemorrhagic disease in infants may cause cutaneous, GI, intrathoracic, or, in the worst cases, intracranial bleeding. If obstructive jaundice develops, bleeding—if it occurs—usually begins after the 4th or 5th day. It may begin as a slow ooze from a surgical incision, the gums, the nose, or GI mucosa, or it may begin as massive bleeding into the GI tract.

Diagnosis of Vitamin K Deficiency

  • Usually prolonged prothrombin time (PT) or elevated international normalized ratio (INR) that decreases after phytonadione

Vitamin K deficiency or antagonism (due to coumarin anticoagulants) is suspected when abnormal bleeding occurs in a patient at risk. Blood coagulation studies can preliminarily confirm the diagnosis. PT is prolonged and INR is elevated, but partial thromboplastin time (PTT), thrombin time, platelet count, bleeding time, and levels of fibrinogen, fibrin-split products, and D-dimer are normal.

If phytonadione (United States Pharmacopeia generic name for vitamin K1) 1 mg IV significantly decreases PT within 2 to 6 hours, a liver disorder is not the likely cause, and the diagnosis of vitamin K deficiency is confirmed.

Some centers can detect vitamin K deficiency more directly by measuring the serum vitamin level. The serum level of vitamin K1 ranges from 0.2 to 1.0 ng/mL in healthy people consuming adequate quantities of vitamin K1 (50 to 150 mcg a day). Knowing vitamin K intake can help interpret serum levels; recent intake affects levels in serum but not in tissues.

More sensitive indicators of vitamin K status, such as PIVKA (protein induced in vitamin K absence or antagonism) and undercarboxylated osteocalcin, are under study.

Treatment of Vitamin K Deficiency

  • Phytonadione

Whenever possible, phytonadione should be given orally or subcutaneously. The usual adult dose is 1 to 20 mg. (Rarely, even when phytonadione is correctly diluted and given slowly, IV replacement can result in anaphylaxis or anaphylactoid reactions.) International normalized ratio (INR) usually decreases within 6 to 12 hours. The dose may be repeated in 6 to 8 hours if INR has not decreased satisfactorily.

Phytonadione 1 to 10 mg orally is indicated for nonemergency correction of a prolonged INR in patients taking anticoagulants. Correction usually occurs within 6 to 8 hours. When only partial correction of INR is desirable (eg, when INR should remain slightly elevated because of a prosthetic heart valve), lower doses (eg, 1 to 2.5 mg) of phytonadione can be given.

In infants, bleeding due to vitamin K deficiency can be corrected by giving phytonadione 1 mg subcutaneously or IM once. The dose is repeated if INR remains elevated. Higher doses may be necessary if the mother has been taking oral anticoagulants.

Prevention of Vitamin K Deficiency

Phytonadione 1 mg IM for infants who weigh > 1500 g OR 0.3 to 0.5 mg/kg IM for infants who weigh ≤ 1500 g is recommended for all neonates within 6 hours of birth to reduce the incidence of intracranial hemorrhage due to birth trauma and of classic hemorrhagic disease of the newborn (risk of increased bleeding 1 to 7 days after birth) (1 Prevention reference Vitamin K deficiency results from extremely inadequate intake or fat malabsorption. Risk of bleeding is increased by use of coumarin anticoagulants. Deficiency is particularly common among breastfed... read more ). It is also used prophylactically before surgery.

Some clinicians recommend that pregnant women taking antiseizure drugs receive phytonadione 10 mg orally once a day for the 1 month or 20 mg orally once a day for the 2 weeks before delivery. The low vitamin K1 content in breast milk can be increased by increasing maternal dietary intake of phylloquinone to 5 mg/day.

Prevention reference

  • 1. Hand I, Noble L, Abrams SA: Vitamin K and the newborn infant. Pediatrics 149(3):e2021056036, 2022. doi: 10.1542/peds.2021-056036

Key Points

  • Vitamin K deficiency causes infant morbidity and mortality worldwide.

  • The deficiency causes bleeding (eg, easy bruisability, mucosal bleeding).

  • Suspect the deficiency in at-risk patients with abnormal or excessive bleeding.

  • Measure PT or INR before and after giving phytonadione; a decrease in a prolonged PT or in an elevated INR after phytonadione confirms the diagnosis.

  • Treat with oral or subcutaneous phytonadione.

Drugs Mentioned In This Article

Drug Name Select Trade
Dilantin, Dilantin Infatabs, Dilantin-125, Phenytek
Alph-E-Mixed , AQUA-E, Aquasol E , Aquavite-E
AquaMEPHYTON, Mephyton
Recothrom, Thrombi-Gel , Thrombin-JMI, Thrombin-JMI Epistaxis, Thrombi-Pad, Thrombogen
NOTE: This is the Professional Version. CONSUMERS: View Consumer Version
quiz link

Test your knowledge

Take a Quiz!