Not Found

Find information on medical topics, symptoms, drugs, procedures, news and more, written for the health care professional.

Cellular and Molecular Basis of Cancer

By Bruce A. Chabner, MD, Director of Clinical Research; Professor of Medicine, Massachusetts General Hospital Cancer Center; Harvard Medical School
Elizabeth Chabner Thompson, MD, MPH, Founder, BFFL Co

Click here for
Patient Education

Cellular Kinetics

Generation time is the time required for a quiescent cell to complete a cycle in cell division (see see Figure: The cell cycle.) and give rise to 2 daughter cells. Malignant cells, particularly those arising from the bone marrow or lymphatic system, may have a short generation time, and there usually are a smaller percentage of cells in G0 (resting phase). Initial exponential tumor growth is followed by a plateau phase when cell death nearly equals the rate of formation of daughter cells. The slowing in growth rate may be related to exhaustion of the supply of nutrients and O2 for the rapidly expanding tumor. Small tumors have a greater percentage of actively dividing cells than do large tumors.

A subpopulation within many tumors, identified by surface proteins, may have the properties of primitive "normal" stem cells, as found in the early embryo. Thus, these cells are capable of entering a proliferative state. They are less susceptible to injury by drugs or irradiation. They are believed to repopulate tumors after surgical, chemical, or radiation treatment.

Cellular kinetics of particular tumors is an important consideration in the design of antineoplastic drug regimens and may influence the dosing schedules and timing intervals of treatment. Many antineoplastic drugs, such as antimetabolites, are most effective if cells are actively dividing, and some drugs work only during a specific phase of the cell cycle and thus require prolonged administration to catch dividing cells during the phase of maximal sensitivity.

Tumor Growth and Metastasis

As a tumor grows, nutrients are provided by direct diffusion from the circulation. Local growth is facilitated by enzymes (eg, proteases) that destroy adjacent tissues. As tumor volume increases, tumor angiogenesis factors, such as vascular endothelial growth factor (VEGF), are produced by tumors to promote formation of the vascular supply required for further tumor growth.

The cell cycle.

G0 = resting phase (nonproliferation of cells); G1 = variable pre-DNA synthetic phase (12 h to a few days); S = DNA synthesis (usually 2 to 4 h); G2 = post-DNA synthesis (2 to 4 h)—a tetraploid quantity of DNA is found within cells; M1= mitosis (1 to 2 h).

Almost from inception, a tumor may shed cells into the circulation. From animal models, it is estimated that a 1-cm tumor sheds > 1 million cells/24 h into the venous circulation. Circulating tumor cells are present in many patients with advanced cancer and even in some with localized disease. Although most circulating tumor cells die in the intravascular space, an occasional cell may adhere to the vascular endothelium and penetrate into surrounding tissues, generating independent tumors (metastases) at distant sites. Metastatic tumors grow in much the same manner as primary tumors and may subsequently give rise to other metastases.

Experiments suggest that the ability to invade, migrate, and successfully implant and stimulate new blood vessel growth are all important properties of metastatic cells, which likely represent a subset of cells in the primary tumor.

Molecular Abnormalities

Genetic mutations are responsible for the generation of cancer cells and are thus present in all cancers. These mutations alter the quantity or function of protein products that regulate cell growth and division and DNA repair. Two major categories of mutated genes are oncogenes and tumor suppressor genes.


These are abnormal forms of normal genes (proto-oncogenes) that regulate various aspects of cell growth. Mutation of these genes may result in direct and continuous stimulation of the pathways (eg, cell surface growth factor receptors, intracellular signal transduction pathways, transcription factors, secreted growth factors) that control cellular growth and division, DNA repair, angiogenesis, and other physiologic processes.

There are > 100 known oncogenes that may contribute to human neoplastic transformation. For example, the RAS gene encodes the ras protein, which carries signals from membrane bound receptors down the RAS-MAPKinase pathway to the cell nucleus, and thereby regulates cell division. Mutations may result in the inappropriate activation of the ras protein, leading to uncontrolled cell growth. In fact, the ras protein is abnormal in about 25% of human cancers. Other oncogenes have been implicated in specific cancers. These include

  • HER2-NEU (amplified but not mutated in breast cancer)

  • BCR-ABL (a translocation of 2 genes that underlies chronic myelocytic leukemia and some B-cell acute lymphocytic leukemias)

  • C-MYC (Burkitt lymphoma)

  • N-MYC (small cell lung cancer, neuroblastoma)

  • Mutated EGFR (adenocarcinoma of the lung)

  • EML4-ALK (a translocation that activates the ALK tyrosine kinase and causes a unique form of adenocarcinoma of the lung)

Specific oncogenes may have important implications for diagnosis, therapy, and prognosis (see individual discussions under the specific cancer type).

Oncogenes typically result from acquired somatic cell mutations secondary to point mutations (eg, from chemical carcinogens), gene amplification (eg, an increase in the number of copies of a normal gene), or translocations (in which pieces of different genes merge to form a unique sequence). These changes may either increase the activity of the gene product (protein) or change its function. Occasionally, mutation of genes results in inheritance of a cancer predisposition, as in the inherited cancer syndrome associated with mutation and loss of function of BRCA1, BRCA2, or p53.

Tumor suppressor genes

Genes such as the p53 gene play a role in normal cell division and DNA repair and are critical for detecting inappropriate growth signals or DNA damage in cells. If these genes, as a result of inherited or acquired mutations, become unable to function, the system for monitoring DNA integration becomes inefficient, cells with spontaneous genetic mutations persist and proliferate, and tumors result.

As with most genes, 2 alleles are present that encode for each tumor suppressor gene. A defective copy of one gene may be inherited, leaving only one functional allele for the individual tumor suppressor gene. If a mutation is acquired in the other allele, the normal protective mechanism of the 2nd normal tumor suppressor gene is lost. For example, the retinoblastoma (RB) gene encodes for the protein Rb, which regulates the cell cycle by stopping DNA replication. Mutations in the RB gene family occur in many human cancers, allowing affected cells to divide continuously.

Another important regulatory protein, p53, prevents replication of damaged DNA in normal cells and promotes cell death (apoptosis) in cells with abnormal DNA. Inactive or altered p53 allows cells with abnormal DNA to survive and divide. Mutations are passed to daughter cells, conferring a high probability of replicating error-prone DNA, and neoplastic transformation results. The p53 gene is defective in many human cancers. As with oncogenes, mutation of tumor suppressor genes such as p53 or RB in germ cell lines may result in vertical transmission and a higher incidence of cancer in offspring.

Chromosomal abnormalities

Gross chromosomal abnormalities (see Overview of Chromosomal Anomalies) can occur through deletion, translocation, or duplication. If these alterations activate or inactivate genes that result in a proliferative advantage over normal cells, then a tumor may develop. Chromosomal abnormalities occur in most human cancers. In some congenital diseases (Bloom syndrome, Fanconi anemia, Down syndrome), DNA repair processes are defective and chromosomes breaks are frequent, putting children at high risk of developing acute leukemia and lymphomas.

Other influences

Most epithelial cancers likely result from a sequence of mutations that lead to neoplastic conversion. For example, the development of tumor in familial polyposis takes place through a sequence of genetic events: epithelium hyperproliferation (loss of a suppressor gene on chromosome 5), early adenoma (change in DNA methylation), intermediate adenoma (overactivity of the RAS oncogene), late adenoma (loss of a suppressor gene on chromosome 18), and finally, cancer (loss of a gene on chromosome 17). Further genetic changes may be required for metastasis.

Telomeres are nucleoprotein complexes that cap the ends of chromosomes and maintain their integrity. In normal tissue, telomere shortening (which occurs with aging) results in a finite limit in cell division. The enzyme telomerase, if activated in tumor cells, provides for new telomere synthesis and allows continuous proliferation of tumors.

Environmental Factors


Viruses contribute to the pathogenesis of human cancers (see Cancer-Associated Viruses). Pathogenesis may occur through the integration of viral genetic elements into the host DNA. These new genes are expressed by the host; they may affect cell growth or division or disrupt normal host genes required for control of cell growth and division. Alternatively, viral infection may result in immune dysfunction, leading to decreased immune surveillance for early tumors.

Cancer-Associated Viruses


Associated Cancer

Epstein-Barr virus

Burkitt lymphoma

Nasopharyngeal carcinoma

Hepatitis B or hepatitis C virus

Hepatocellular carcinoma

Human herpesvirus 8

Kaposi sarcoma

Human papillomaviruses

Anal carcinoma

Cervical carcinoma

Head and neck carcinoma

Human T-lymphotropic virus

T-cell lymphomas

Bacteria may also cause cancer. Helicobacter pylori infection increases the risk of several kinds of cancer (gastric adenocarcinoma, gastric lymphoma, mucosa-associated lymphoid tissue [MALT] lymphoma).

Parasites of some types can lead to cancer. Schistosoma haematobium causes chronic inflammation and fibrosis of the bladder, which may lead to cancer. Opisthorchis sinensis has been linked to carcinoma of the pancreas and bile ducts.


Ultraviolet radiation may induce skin cancer (eg, basal and squamous cell carcinoma, melanoma) by damaging DNA. This DNA damage consists of formation of thymidine dimers, which may escape excision and resynthesis of a normal DNA strand because of inherent defects in DNA repair (eg, xeroderma pigmentosum) or through rare, random events.

Ionizing radiation is also carcinogenic. For example, survivors of the atomic bomb explosions in Hiroshima and Nagasaki have a higher-than-expected incidence of leukemia and other cancers. Similarly, exposure to therapeutic irradiation may lead to leukemia, breast cancer, and other solid tumors years after exposure. Use of x-rays in diagnostic imaging studies is thought to increase risk of cancer (see Principles of Radiologic Imaging). Industrial exposure (eg, to uranium by mine workers, to asbestos) is linked to development of lung cancer after a 15- to 20-yr latency. Long-term exposure to occupational irradiation or to internally deposited thorium dioxide predisposes people to angiosarcomas and acute nonlymphocytic leukemia.

Exposure to the radioactive gas radon, which is released from soil, increases the risk of lung cancer. Normally, radon disperses rapidly into the atmosphere and causes no harm. However, when a building is placed on soil with high radon content, radon can accumulate within the building, sometimes producing sufficiently high levels in the air to cause harm. In exposed people who also smoke, the risk of lung cancer is further increased.

Common Chemical Carcinogens


Type of Cancer

Environmental and industrial

Aromatic amines

Bladder cancer


Lung cancer

Skin cancer


Lung cancer





Lung cancer

Diesel exhaust

Lung cancer


Nasal cancer

Nasopharyngeal cancer

Hair dyes

Bladder cancer

Ionizing radiation


Manufactured mineral fibers

Lung cancer


Lung cancer

Nasal sinus cancer

Painting materials

Lung cancer

Pesticides, nonarsenic

Lung cancer


Lung cancer

Radiation therapy


Ultraviolet radiation

Skin cancer

Vinyl chloride

Hepatic angiosarcoma


Betel nuts

Oropharyngeal cancer


Bladder cancer

Cervical cancer

Esophageal cancer

Head and neck cancer

Kidney cancer

Lung cancer

Pancreatic cancer

Stomach cancer


Alkylating drugs (cyclophosphamide, platinum analogs)


Diethylstilbestrol (DES)

Cervicovaginal cancer in women exposed in utero


Liver cancer

Topoisomerase inhibitors (anthracyclines, etoposide)


*Health care practitioners exposed to antineoplastic drugs are also at risk of adverse effects on reproduction.

Drugs and chemicals

Estrogen in oral contraceptives may slightly increase the risk of breast cancer, but this risk decreases over time. Estrogen and progestin used for hormone replacement therapy also increase the risk of breast cancer. Diethylstilbestrol (DES) increases the risk of breast cancer in women who took the drug and increases the risk of vaginal carcinoma in daughters of these women who were exposed before birth. Long-term use of anabolic steroids may increase the risk of liver cancer. Treatment of cancer with chemotherapy drugs alone or with radiation therapy increases the risk of developing a second cancer.

Chemical carcinogens can induce gene mutations and result in uncontrolled growth and tumor formation (see Common Chemical Carcinogens). Other substances, called co-carcinogens, have little or no inherent carcinogenic potency but enhance the carcinogenic effect of another agent when exposed simultaneously.

Dietary substances

Certain substances consumed in the diet can increase the risk of cancer. For instance, a diet high in fat and obesity itself have been linked to an increased risk of colon, breast, and possibly prostate cancer. People who drink large amounts of alcohol are at much higher risk of developing head and neck and esophageal cancer. A diet high in smoked and pickled foods or in meats cooked at a high temperature increases the risk of developing stomach cancer. People who are overweight or obese have a higher risk of cancer of the breast, endometrium, colon, kidney, and esophagus.

Physical factors

Chronic skin, lung, GI, or thyroid inflammation may predispose to development of cancer. For example, patients with long-standing inflammatory bowel disease (ulcerative colitis) have an increased risk of colorectal carcinoma. Sunlight and tanning light exposure increases the risk of skin cancers and melanoma.

Immunologic Disorders

Immune system dysfunction as a result of inherited genetic mutation, acquired disorders, aging, or immunosuppressants interferes with normal immune surveillance of early tumors and results in higher rates of cancer. Known cancer-associated immune disorders include

  • Ataxia-telangiectasia (acute lymphocytic leukemia [ALL], brain tumors, gastric cancer)

  • Wiskott-Aldrich syndrome (lymphoma, ALL)

  • X-linked agammaglobulinemia (lymphoma, ALL)

  • Immune deficiency secondary to immunosuppressants or HIV infection (large cell lymphoma, cervical cancer, head and neck cancer, Kaposi sarcoma)

  • Rheumatologic conditions, such as SLE, RA, and Sjögren syndrome (B-cell lymphoma)

  • Fanconi anemia (AML)

Resources In This Article

Drugs Mentioned In This Article

  • Drug Name
    Select Trade
  • ANADROL-50