Not Found
Locations

Find information on medical topics, symptoms, drugs, procedures, news and more, written for the health care professional.

* This is the Professional Version. *

Magnetic Resonance Imaging (MRI) in Neurologic Disorders

By Michael C. Levin, MD, University of Tennessee Health Science Center

Click here for
Patient Education

MRI provides better resolution of neural structures than CT. This difference is most significant clinically for visualizing the following:

  • Cranial nerves

  • Brain stem lesions

  • Abnormalities of the posterior fossa

  • Spinal cord

CT images of these regions are often marred by bony streak artifacts. MRI is especially valuable for identifying spinal abnormalities (eg, tumor, abscess) compressing the spinal cord and requiring emergency intervention. Also, MRI is better for detecting demyelinating plaques, early infarction, subclinical brain edema, cerebral contusions, incipient transtentorial herniation, abnormalities of the craniocervical junction, and syringomyelia.

MRI is contraindicated if patients

  • Have had a pacemaker or cardiac or carotid stents for < 6 wk

  • Have ferromagnetic aneurysm clips or other metallic objects that may overheat or be displaced within the body by the intense magnetic field

Visualization of inflammatory, demyelinated, and neoplastic lesions may require enhancement with IV paramagnetic contrast agents (eg, gadolinium). Although gadolinium is thought to be much safer than contrast agents used with CT, nephrogenic systemic fibrosis (nephrogenic fibrosing dermopathy) has been reported in patients with impaired renal function and acidosis.

There are several MRI techniques; choice of technique depends on the specific tissue, location, and suspected disorder:

  • Diffusion-weighted imaging (DWI) allows rapid, early detection of ischemic stroke.

  • Perfusion-weighted imaging (PWI) can detect areas of hypoperfusion in early ischemic stroke but cannot yet reliably distinguish areas with benign oligemia from those with injurious hypoperfusion that results in infarction.

  • Diffusion tensor imaging (DTI) is an extension of DWI that can show white matter tracts in 3 dimensions (tractography) and can be used to monitor the integrity of CNS tracts affected by aging and disease.

  • Double inversion recovery (DIR), used in research centers, can detect demyelination of gray matter better than other MRI techniques; gray matter demyelination is now considered common in multiple sclerosis.

  • Functional MRI (fMRI) shows which brain regions are activated (shown by increased flow of oxygenated blood) by a specific cognitive or motor task, but its clinical use is still being defined.

Magnetic resonance angiography (MRA) uses MRI with or without a contrast agent to show cerebral vessels and major arteries and their branches in the head and neck. Although MRA has not replaced cerebral angiography, it is used when cerebral angiography cannot be done (eg, because the patient refuses or has increased risk). As a check for stroke, MRA tends to exaggerate severity of arterial narrowing and thus does not usually miss occlusive disease of large arteries.

Magnetic resonance venography (MRV) uses MRI to show the major veins and dural sinuses of the cranium. MRV obviates the need for cerebral angiography in diagnosing cerebral venous thrombosis and is useful for monitoring thrombus resolution and guiding the duration of anticoagulation.

Magnetic resonance spectroscopy can measure metabolites in the brain regionally to distinguish tumors from abscess or stroke.

* This is the Professional Version. *